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Abstract—We study the problem of discerning strings with
deterministic finite state automata (DFAs, for short). We begin
with a survey on the historical and algorithmic roots of this
problem. Then, we focus on the maximun number of states that
are necessary to separate two strings of a given length. We survey
the most important results concerning this issue and we study
the problem from the point of view of some alternative models
of automata. The preliminary results concerning the last issue
motivate us to formulate a conjecture stating that DFAs can
separate any pair of strings by using a logarithmic number of
states. We give some evidence supporting our conjecture.

Let ℳ be an automaton, we say that ℳ separates two
strings 𝑢 and 𝑣 if and only if ℳ accepts one of those two
strings but rejects the other. In this work we study the problem
of separating (discerning) strings by deterministic finite state
automata (DFAs, for short).

Let 𝑢, 𝑣 be two binary strings. We use the symbol 𝑆 (𝑢, 𝑣)
to denote

min ({𝑛 : there exists a 𝑛-state DFA separating 𝑢 and 𝑣})

and we use the symbol 𝑠 (𝑛) to denote

max ({𝑆 (𝑢, 𝑣) : 𝑢, 𝑣 ∈ {0, 1}𝑛})
We focus on the maximum number of states that are necessary
to separate two strings of a given length. In other words, we
are interested in the behavior of function 𝑠.

The study of function 𝑠 is related to an algorithmic problem
coming from machine learning, i.e. computing the minimal
finite state automaton separating two given lists of strings. It
is known that the aforementioned problem is NP-hard [1], but
little is known about the algorithmic hardness of its restriction
to lists of size one, i.e. the algorithmic complexity of the
problem of computing a minimal DFA separating two strings
given as input. We argue that a good understanding of the
algorithmic hardness of this restricted problem necessitates of a
fine-grained knowledge of the asymptotic behavior of function
𝑠. Therefore, we have tried to develop a systematic analysis of
function 𝑠. This investigation has led us to study some related
problems, which are interesting in its own right.

Organization of the paper and contributions. This paper
is organized into three sections. In section one we present a
gentle introduction to the problem, focusing on its algorithmic
and historical roots. In section three we begin the study of
the maximum number of states that are necessary to separate
two strings of a given length. We prove a theorem, from which
most of the applications of fingerprinting, that were previously
studied, can be derived as special cases. In section three we
study the problem of constructing pairs of strings that are

hard to separate (pairs of strings requiring a superlogarithmic
number of states), to this end we consider some alternative
models of automata, and we establish some first results which
seem to indicate that a logarithmic number of states always
suffice.

I. INTRODUCTION AND MOTIVATIONS

Suppose that you are Thomas A. Anderson (Neo) and you
have realized that the living world is being controlled by an evil
algorithm called The Matrix. If you want to defeat The Matrix
and release the human beings, you have to know as much as
possible about the structure of such a mighty algorithm. But the
algorithm is a black box which can be observed only through
its actions. Then, you are coping with a learning problem: the
problem of learning The Matrix.

To begin with, we suppose that the Matrix is a very
elementary type of algorithm, a finite state automaton. Then,
at a given time instant, the actions of the algorithm that have
been observed by the rebels are just two disjoint lists of binary
strings, say 𝑤1, . . . , 𝑤𝑛 and 𝑢1, . . . , 𝑢𝑚, such that the first one
is constituted by all the strings that have been accepted by the
Matrix, while the second one is constituted by all the strings
that have been rejected. Thus, our problem has been reduced to
compute a DFA fitting the given data. The problem, so defined,
is ill posed because it is completely ambiguous: each one of
the learning scenarios considered in the problem admits an
infinite number of consistent and non-equivalent hypothesis.
Therefore, we use Occan Razor to define a more interesting
problem (see below).

Problem 1: (LM: Learning the Matrix)

∙ Input: ({𝑤1, . . . , 𝑤𝑛} , {𝑢1, . . . , 𝑢𝑚}), where
𝑤1, . . . , 𝑤𝑛, 𝑢1, . . . , 𝑢𝑚 are binary strings.

∙ Problem: Compute a minimal finite state automaton
that accepts each 𝑤𝑖 and rejects each 𝑢𝑗 , where 1 ≤
𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚.

Thus, if Neo assumes that the powerful Matrix is the most
efficient algorithm fitting the given data, he needs to solve
problem LM. Now we introduce a decision version of LM.

Problem 2: (d-LM)

∙ Input: ({𝑤1, . . . , 𝑤𝑛} , {𝑢1, . . . , 𝑢𝑚} , 𝑡), where
𝑤1, . . . , 𝑤𝑛, 𝑢1, . . . , 𝑢𝑚 are binary strings and 𝑡 is a
positive integer.

∙ Problem: Decide if there exists a 𝑡-state deterministic
finite state automaton, say ℳ, such that for all 𝑖 ≤ 𝑛,
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ℳ accepts the string 𝑤𝑖, while for all 𝑗 ≤ 𝑚, ℳ
rejects the string 𝑢𝑗 .

Unfortunately (for Neo and the rebels) the above problem
is NP-complete (See [1]), and it implies that LM is NP-hard.
It would be a very frustrating tale, if this impossibility result1

were the end of the story. We would like to try some different
approaches to deal with the intractability barrier imposed by
the NP-hardness of LM. There are a plenty of possibilities
to try. We can ask us, for instance, whether LM can be
approximated within some polynomial range. Unfortunately
this is not the case: Pitt and Warmuth [2] proved that the
dfa consistency problem (as the problem is usually called in
the literature) cannot be approximated within any polynomial
range. Although the situation for the rebels begins to become
desperate, there are still some other approaches to try. What
about studying some relevant restrictions of the problem? It
is known, for instance, that the restriction to unary strings
can be solved in polynomial time [3]. Which other interesting
restrictions of d-LM are tractable? We have chosen to study
the restriction of LM to the set of instances that are constituted
by two lists of size one. That is, we have chosen to study the
following algorithmic problem:

Problem 3: (2LM)

∙ Input: (𝑢, 𝑣), where 𝑢, 𝑣 are binary strings.

∙ Problem: Compute a minimal finite state automaton
accepting 𝑢 and rejecting 𝑣.

The above restriction is a natural one and it is related to
some interesting problems in data compression [4]. In order
to analyse the computational hardness of 2LM, we have to
consider the corresponding restriction of d-LM, which we will
denote as d-2LM. The proofs of NP-completeness for d-LM
cannot be followed for 2-LM and, up to our knowledge, it is
still open wether 2LM can be solved in polynomial time or
d-2LM is NP-complete.

Let 𝑘 (𝑡) be a function solving the functional equation

𝑘 (𝑡) log (𝑘 (𝑡)) = log (𝑡) .

Notice that if 𝑠 (𝑛) ∈ 𝑂 (𝑘 (𝑛)) , then d-2LM can be solved
in polynomial time. It is the case, given that a 𝑛-state DFA
can be described using 𝑂 (𝑛 log (𝑛)) bits. Thus, it seems that
in order to understand the computational hardness of d-2LM
we must understand the behavior of function 𝑠.

It is known that 𝑠 (𝑛) ∈ Ω(log (𝑛)) (see [5]). That means:
a polynomial time naive brute force algorithm cannot solve
d-LM, which is not an evidence supporting the possible NP-
completeness of our problem. The lower bound Ω(log (𝑛))
is the best lower bound we know, and then, if such a bound
is tight, d-2LM could be solved using 𝑂 (log (𝑛) log log (𝑛))
nondeterministic bits.

If function 𝑠 grows slowly, d-2LM can be solved using
small space, and then, it is fair to conclude that, the possibili-
ties of d-2LM being NP-complete increases if function 𝑠 grows
quickly. Goralcik and Koubek (see [6]) were apparently the

1The NP-hardness of LM suggests that Neo and his followers cannot solve
the problem and save the world.

first to study function 𝑠. They sketched a proof2 that 𝑠 (𝑛) ∈
𝑜 (𝑛). Then, Robson proved that 𝑠 (𝑛) ∈ 𝑂

(
𝑛

2
5 log

3
5 (𝑛)

)
[7].

In the same paper Robson reported on a conjecture of Ch.
Choffrut3: the function 𝑠 (𝑛) belongs to 𝑂 (𝑛𝜀) , for all positive
real number 𝜀.

It seems that Ch. Choffrut was the first researcher who was
aware of the importance of function 𝑠. Choffrut’s conjecture
remains unsolved after more than 25 years. Note that if one
proves that the problem d-2LM is NP-complete, then he is
providing strong evidence against such a hard conjecture.
Therefore, establishing the computational hardness of d-2LM
does not seem easy, and a solution to this problem requires a
better understanding of function 𝑠.

II. BASIC FACTS

We start with answering why we mainly focus on binary
alphabets. For 𝑟 ≥ 1, 𝑠𝑟 is the function 𝑚 	−→ 𝑠𝑟 (𝑚)
calculated as

max
𝑢,𝑣∈{0,...,𝑟−1}𝑚

(min({𝑘 : there exists a 𝑘-state

DFA separating 𝑢 and 𝑣}))
Notice that 𝑠2 is identical to 𝑠. Goralcik and Koubek [6] proved
that for all 𝑛 ≥ 2, the equation 𝑠𝑛 = 𝑠 holds. As usual, unary
alphabets (𝑟 = 1) is a very special case. Given 𝑛,𝑚 ≥ 1, (by
overwriting 𝑠1) 𝑠1 (𝑛,𝑚) denotes

min({𝑘 : there exists a 𝑘-state
DFA separating the strings 0𝑛 and 0𝑚})

Theorem 4: Suppose that 𝑛 < 𝑚. Then, 𝑠1 (𝑛,𝑚) ∈
𝑂 (log (𝑚)) . On the other hand, there are infinitely many pairs
𝑛 < 𝑚 such that 𝑠1 (𝑛,𝑚) ∈ Ω(log (𝑚)) .

Proof: Given 𝑛 < 𝑚, we can always find a prime number
𝑝 ∈ 𝑂 (log (𝑚)) such that 𝑛 mod 𝑝 ∕= 𝑚 mod 𝑝. Thus, we
can construct a DFA that simply computes the length of its
input modulo 𝑝, i.e. after reading the inputs 0𝑛 and 0𝑚, our
DFA reaches two different states. Thus, 0𝑛 and 0𝑚 can be
separated by using 𝑝 states, with 𝑝 ∈ 𝑂 (log (𝑚)) .

In order to prove the lower bound, we use the following
set:

𝑆 =
{(

0𝑛−1, 0𝑛−1+lcm(1,2,...,𝑛)
)
: 𝑛 ≥ 1

}
.

It is easy to check that the pair 0𝑛−1, 0𝑛−1+lcm(1,2,...,𝑛)

cannot be separated with less than 𝑘 = 𝑛 states. Note that
𝑛 ∈ Ω(log (𝑛− 1 + lcm (1, 2, . . . , 𝑛))) .

Thus, it is now clear that the binary case is representative
of the cases that we do not understand.

Notice that one can use the fingerprinting trick used in the
above proof to prove that:

Given 𝑢, 𝑣 ∈ {0, 1}∗ , if ∣𝑢∣ < ∣𝑣∣ then 𝑆 (𝑢, 𝑣) ∈
𝑂 (log (∣𝑣∣)) .

2They postponed the detailed proof for an ulterior publication but it never
took place since Robson [7] provided a better bound shortly after.

3Goralcik and Koubek acknowledged, at the very beginning of their seminal
paper, that the problem of studying function 𝑠 (𝑛) was suggested to them by
Choffrut.
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The above fact is the reason why, we have reduced the
study of the bivariate function 𝑆 to the study of the univariate
function 𝑠.

III. LOOKING FOR PAIRS THAT ARE HARD TO SEPARATE

Our main goal is to reduce the gap between lower and
upper bounds for function 𝑠. We start with working on the
lower bound side and we look for pairs that are hard to
separate.

Most strings can be separated using few states. The ex-
pected number of states that are necessary to separate two
randomly chosen strings is 𝑂 (1) [5]. This probabilistic re-
sult implies that the hard pairs cannot be found by random
search. Thus, it is necessary to understand what makes the
separation a hard task. Remind that the best and non-trivial
lower bound for 𝑠 is Ω(log (𝑛)), which was shown by using
the following infinite set {(𝐺𝑛,𝐾𝑛) : 𝑛 ≥ 2} , where 𝐺𝑛 =
0𝑛−11𝑛−1+lcm(1,...,𝑛) and 𝐾𝑛 = 0𝑛−1+lcm(1,...,𝑛)1𝑛−1. We
call them as KG pairs (because of Koubek and Goralcik [6]).
We believe that the KG pairs are not the hardest ones to
separate. The next two lemmas provide some strong evidence
to our belief.

Let 𝒞 be a finite state automaton model and let 𝑢, 𝑣 be two
binary strings. We use the symbol 𝑆𝒞 (𝑢, 𝑣) to denote

min({𝑛 : there exists a 𝑛-state 𝒞-machine
separating 𝑢 and 𝑣})

and we use symbol 𝑠𝒞 (𝑛) to denote the function

𝑠𝒞 (𝑛) = max ({𝑆𝒞 (𝑢, 𝑣) : 𝑢, 𝑣 ∈ {0, 1}𝑛})
We will use the symbol 𝒜ℱ𝒜 to denote the classes of
alternating finite state automata (AFA, for short) [8]. Recall
that a binary AFA is a quintuple, (𝑄 (∃) , 𝑄 (∀) , 𝑞0, 𝐹, 𝛿),
where:

∙ 𝑄 (∃) is a finite set of existential states.

∙ 𝑄 (∀)is a finite set of universal states.

∙ 𝑞0 is the initial state.

∙ 𝐹 ⊂ 𝑄 (∃) ∪𝑄 (∀) is the set of accepting states.

∙ 𝛿 : (𝑄 (∃) ∪𝑄 (∀))×{0, 1, 𝜖} → 𝒫 (𝑄 (∃) , 𝑄 (∀)), is
the transition relation of the automaton.

Recognizing the unary language 𝐿𝑛 = {0𝑛} is also known
as solving counting problem [8]. It is clear that any 𝑚-state
finite state machine recognizing 𝐿𝑛−1 can be modified in a
straightforward way to separate two strings 𝑢 , 𝑣 such that
𝑢𝑛 ∕= 𝑣𝑛, and without any increase in the number of states.
It is known that DFAs and NFAs requires Θ(𝑛) states to
recognize 𝐿𝑛, but AFAs can recognize the same language with
𝑂 (log (𝑛)) states (see [9], [8]).

Lemma 5: Given 𝑛 ≥ 1, we have that 𝑆𝒜 (𝐾𝑛, 𝐺𝑛) ∈
𝑂 (log (log (∣𝐾𝑛∣))).

Proof: The lengths of 𝐾𝑛 and 𝐺𝑛 are exponential in 𝑛,
and AFAs can separate them by using 𝑂 (log (𝑛)) states.

The above lemma indicates that KG pairs become fairly
easy to separate, when we consider the model of alternating

finite state automata. In fact, it can be much easier when
considering some other finite state machines. Some computa-
tional models, like probabilistic or quantum, can encode some
information into their probabilities or amplitudes, and so they
can very efficiently separate KG pairs. Consider the case of
Probabilistic finite automata (PFAs, for short), those automata
can separate any KG pair with bounded-error by using only 2
states. Let (𝐾𝑛, 𝐺𝑛) be a KG pair for 𝑛 ≥ 2, and let 𝒫𝑛 be
the PFA separating them. The states of 𝒫𝑛 are 𝑞1 and 𝑞2, and
𝑞1 is the initial and only accepting state. After reading each
0, 𝒫𝑛 stays in 𝑞1 with probability 𝑝, and switches to 𝑞2 with
the remaining probability 1 − 𝑝. In any other transition, 𝒫𝑛

stays in the same state. Thus, after reading 𝐺𝑛 the accepting
probability will be 𝑝𝑛, and, after reading 𝐾𝑛, the accepting
probability will be 𝑝𝑂(𝑒𝑛).

It could happens that AFAs can separate all the pairs of
length 𝑛 by using 𝑂 (log (log (𝑛))) states. Next lemma shows
that it is not the case, next lemma shows that there exist pairs
of strings requiring a very much larger number of states.

Lemma 6: 𝑠𝒜ℱ𝒜 (𝑛) ∈ Ω
(√

log (𝑛)
)
.

Proof: Suppose that 𝑠𝒜ℱ𝒜 (𝑛) ∈ 𝑜
(√

log (𝑛)
)
, suppose

that Alice and Bob get two strings, say 𝑢, 𝑣 ∈ {0, 1}𝑛 , and
suppose that they are asked to decide if those two strings are
different. They must accomplish this task using the minimal
amount of communication (Alice get string 𝑢, Bob get string 𝑣,
and each one of them has not direct access to the string given
to the other). Fortunately, they can receive some help from an
all-mighty prover, who could see the two strings, and give to
both of them the same advice. If 𝑢 and 𝑣 are different, the
all-mighty prover could compute an AFA with 𝑜

(√
log (𝑛)

)

states that separates those two strings. Such an automaton can
be described using 𝑜 (log (𝑛)) bits, because any alternating
automaton with 𝑚 states can be described using 𝑂

(
𝑚2

)
bits,

(the transition relation can be encoded using two boolean
matrices of order 𝑚, while the sets of universal, existential
and accepting states can be encoded by three 𝑚-dimensional
boolean vectors). Then, given strings 𝑢 and 𝑣, Alice and Bob
can correctly decide if they are different, using 𝑜 (log (𝑛)) bits
of advice (the code of an AFA separating strings 𝑢 and 𝑣)
and one communication bit. To this end, they could use the
following communication protocol:

1) Alice and Bob receive 𝑜 (log (𝑛)) bits of advice from
the prover (the same message for both of them).

2) Alice and Bob decode the message and construct the
corresponding automaton, which we denote with the
symbol 𝒜𝑢𝑣 .

3) Alice runs 𝒜𝑢𝑣 , on input 𝑢. If 𝒜𝑢𝑣 accepts, Alice
sends 1 to Bob, otherwise she sends 0.

4) Bob runs 𝒜𝑢𝑣 , on input 𝑣. Then, he uses the result
of this computation, and the bit he got from Alice,
in order to correctly determine wether the two given
strings are different.

Then, we have that Alice and Bob can compute the function
EQ (the equality function) using 𝑜 (log (𝑛)) nondeterministic
bits and communicating at most one bit. Communication
complexity theory says us that it is not possible [10], then
𝑠𝒜ℱ𝒜 (𝑛) cannot belong to 𝑜

(√
log (𝑛)

)
.
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The above two lemmas show that KG pairs can be sep-
arated by alternating automata using very much fewer states
than the hardest pairs. This fact can also be seen as an evidence
that KG pairs also very far from being the hardest pairs for
DFA’s.

Question. Which are the hardest pairs for alternating
automata? How many states are necessary to separate those
pairs? Which pairs require Ω

(√
log (𝑛)

)
states?

Remark 7: Let 𝒞 be a state-based model of automata,
one could consider the problem d-2LM[𝒞], i.e. computing a
minimal 𝒞-automaton separating two strings given as input.
Interesting enough, the complexity of those problems seems
to increase when the computational power of the class 𝒞
decreases. Notice that d-2LM[𝒜ℱ𝒜] can be solved using
𝑂
(
log2 (𝑛)

)
nondeterministic bits, and notice that d-2LM[𝒯 ]

(𝒯 stands for Turing machines) can be solved in polynomial
time by brute-force search. On the other hand, it seems (we
conjecture) that the problem d-2LM[DFA] is hard, and cannot
be solved in polynomial time.

Fingerprinting was used to separate pairs of strings of
different length (it includes the case of unary strings, see
Theorem 4), using a logarithmic number of states. It can also
be used to separate some other types of pairs using few states.

Let 𝑘, 𝑟 ≤ 𝑛 be three positive integers. The 𝑛-window of
gap 𝑘 and preperiod 𝑟 is the set {𝑟, 𝑟 + 𝑘, ..., 𝑟 + 𝑙𝑘} , where
𝑙 = max ({𝑖 : 𝑟 + 𝑖𝑘 ≤ 𝑛}) . Given 𝑢 ∈ {0, 1}𝑛 , we use the
symbol ⟨𝑢⟩𝑟,𝑘 to denote the subword 𝑢𝑟𝑢𝑟+𝑘...𝑢𝑟+𝑙𝑘, that is:
⟨𝑢⟩𝑟,𝑘 denotes the subword of 𝑢 that can be observed through
the 𝑛-window of gap 𝑘 and preperiod 𝑟.

Let 𝑘, 𝑟 ≤ 𝑛, let 𝑢 ∈ {0, 1}𝑛 and let 𝑤 be a short string (a
pattern). We use the symbol #𝑟,𝑘

𝑤 (𝑢) to denote the quantity

∣{𝑖 : 𝑖 = 𝑟 + 𝑘𝑠 & 𝑖+ 𝑘(∣𝑤∣ − 1) ≤
𝑛 & 𝑢𝑖𝑢𝑖+𝑘...𝑢𝑖+𝑘(∣𝑤∣−1) = 𝑤}∣

That is: #𝑟,𝑘
𝑤 (𝑢) counts the number of times that pattern 𝑤

can be observed through the 𝑛-window of gap 𝑘 and preperiod
𝑟.

Theorem 8: Let 𝑢, 𝑣 be two binary strings of length 𝑛. If
#𝑟,𝑘

𝑤 (𝑢) ∕= #𝑟,𝑘
𝑤 (𝑣) , those two strings can be separated using

𝑂 (log (𝑛) ∣𝑤∣ (𝑘 + 𝑟)) states.

Proof: Given a regular language 𝐿 requiring 𝑚 states, it
is easy to construct a DFA with 𝑚 (𝑘 + 𝑟) states that accepts
the language {

𝑢 : ⟨𝑢⟩𝑟,𝑘 ∈ 𝐿
}

And then, given 𝑝 ≥ 1, it is also easy to construct a DFA
with 𝑝 ∣𝑤∣ (𝑘 + 𝑟) states that counts modulo 𝑝 the number of
times that pattern 𝑤 can be observed through the 𝑛-window of
gap 𝑘 and preperiod 𝑟. Thus, it is possible to construct a DFA
with 𝑝 ∣𝑤∣ (𝑘 + 𝑟) states, which, on input 𝑥, computes #𝑟,𝑘

𝑤 (𝑥)
mod 𝑝. Suppose that #𝑟,𝑘

𝑤 (𝑢) ∕= #𝑟,𝑘
𝑤 (𝑣) . In order to separate

those two strings using 𝑂 (log (𝑛) ∣𝑤∣ (𝑘 + 𝑟)) states, we only
have to pick a prime 𝑝 ∈ 𝑂 (log (𝑛)) and such that #𝑟,𝑘

𝑤 (𝑢)
mod 𝑝 ∕= #𝑟,𝑘

𝑤 (𝑣) mod 𝑝.

We can use Theorem 8 to obtain, as easy corollaries,
two of the main results concerning this issue (applications of
fingerprinting) that are consigned in the survey of Demaine
et. al. [5]. First, some notation. Let 𝑢 ∈ {0, 1}𝑛 , and let
𝑤 ∈ {0, 1}𝑘 be a short string (a pattern). We use the symbol
#𝑤 (𝑢) to denote the quantity

∣{𝑖 ≤ 𝑛 : 𝑖+ 𝑘 − 1 ≤ 𝑛 & 𝑢𝑖𝑢𝑖+1...𝑢𝑖+𝑘−1 = 𝑤}∣
Corollary 9: Let 𝑢, 𝑣 be two binary strings, and let 𝑤 be

a short pattern.

1) If #𝑤 (𝑢) ∕= #𝑤 (𝑣) , then 𝑢 and 𝑣 can be separated
using 𝑂 (∣𝑤∣ log (𝑛)) states.

2) Let 𝑘 be the Hamming distance between 𝑢 and 𝑣, we
have that 𝑆 (𝑢, 𝑣) ∈ 𝑂 (𝑘 log (𝑛)).

Proof: To prove Item 1 it is enough to note that for all
string 𝑢 and for all pattern 𝑤, the equality #𝑤 (𝑢) = #1,1

𝑤 (𝑢)
holds.

Now, we will prove Item 2. Let 𝑖1, ..., 𝑖𝑘 be the positions
where 𝑢 and 𝑣 differ. The key fact in the proof is that it is
possible to compute a prime number 𝑝 ∈ 𝑂 (𝑘 log (𝑛)) , such
that 𝑖1 is the unique position from the set {𝑖1, ..., 𝑖𝑘} , which
can be observed through the 𝑛-window of gap 𝑝 and preperiod
1. Then, it happens that #1,𝑝

1 (𝑢) mod 2 ∕= #1,𝑝
1 (𝑣) mod 2.

Thus, we can separate those two strings using 𝑂 (𝑘 log (𝑛))
states.

Now, we would like to return to the task that we have
chosen at the beginning of this section: the construction of
pairs that are hard to separate. To begin with, we would like
to attack a modest goal: constructing an infinite set of pairs
requiring Ω

(
log1+𝜀 (𝑛)

)
states (for some 𝜀 > 0). To achieve

this goal, we have to take into account (we have to overcome)
the restrictions imposed by Theorem 8 and its corollary, which
obligate us to accomplish two seemingly opposite tasks:

We must construct pairs of words which are very similar
(given a window, any pattern that can be observed through the
window, should be observed the same number of times in both
strings) and which are, simultaneously, very different (their
Hamming distance is large).

The above task, which at first sight seems to be difficult, is
quite easy indeed. Let 𝑛 be an integer, let 𝑊𝑛 = 02𝑛1𝑛0𝑛

and let 𝑈𝑛 = 0𝑛1𝑛02𝑛. Notice that for all 𝛿1, 𝛿2, 𝛿3 < 1
such that 𝛿2 + 𝛿3 < 1, and for all 𝑤 ∈ {0, 1}𝛿1 , the
equality #𝛿1,𝛿2

𝑤 (𝑊𝑛) = #𝛿1,𝛿2
𝑤 (𝑈𝑛) holds. Notice also that the

Hamming distance between those two strings is 2𝑛. However,
those two strings can be separated using 𝑂 (log (𝑛)) states.

Our aim (the construction of pairs that are hard to separate)
is reminiscent of The Reconstruction Problem for Sequences
[11], which we will proceed to define.

Given a string 𝑢 ∈ {0, 1}𝑛 , and given 𝑤 ∈ {0, 1}𝑘 (with
𝑘 ≤ 𝑛) we use the symbol #̂𝑤 (𝑢) to denote the quantity

∣{{𝑖1, ..., 𝑖𝑘} ⊂ [𝑛] : 𝑢𝑖1 ...𝑢𝑖𝑘 = 𝑤}∣

That is: #̂𝑤 (𝑢) counts the number of times that 𝑤 oc-
curs as a substring of 𝑣. The 𝑘-deck of 𝑢 is the vector(
#̂𝑤 (𝑢)

)
𝑤∈{0,1}𝑘

. We say that the 𝑘-deck determines 𝑢 if
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and only if string 𝑢 can be unambiguously reconstructed from
its 𝑘-deck, that is: if for all 𝑣 ∕= 𝑢 it happens that

(
#̂𝑤 (𝑢)

)
𝑤∈{0,1}𝑘

∕=
(
#̂𝑤 (𝑣)

)
𝑤∈{0,1}𝑘

Or, using the terminology employed in this paper: the 𝑘-
deck of 𝑢 separates this string from any other string. Consider
the function 𝑟 : ℕ → ℕ defined by

𝑟 (𝑛) = min ({𝑘 : any 𝑢 ∈ {0, 1}𝑛 is determined by its 𝑘-deck})

The Reconstruction Problem asks for determining upper
and lower bounds for 𝑟. Strikingly, the best known lower
bound for 𝑟 is Ω(log (𝑛)) , and the best known upper bound
is 𝑂 (

√
𝑛) (see [12] and [11]). A naive guess is that the pairs

that are hard to separate using the counting of subwords are
also hard to separate using DFAs. Once again intuition seems
to be wrong. On one hand, the pairs of strings that are used to
obtain the logarithmic lower bound for function 𝑟 [12] (which
is very far from being trivial), can be separated using only two
states, because given one of those pairs, say (𝑢, 𝑣) , it happens
that either (𝑢1 = 0 and 𝑣1 = 1) or (𝑢1 = 1 and 𝑣1 = 0). On
the other hand, it is easy to check that KG pairs are separated
by their 1-decks (because the substring 1 occurs more times
in 𝐺𝑛 than in 𝐾𝑛). Thus, it seems that function 𝑟 is not really
related to function 𝑠.

We began this section with the confidence that we could
construct pairs requiring a superlogarithmic number of states.
Now, it is by no means clear if such a goal can be achieved.
Let us finish this paper stating a conjecture, which is very
much stronger than Choffrut’s conjecture.

Conjecture 10: 𝑠 (𝑛) ∈ 𝑂 (log (𝑛)) .
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