
2015 XLI Latin American Computing Conference (CLEI)

On the real-state processing of regular operations
and The Sakoda-Sipser problem
J. Andres Montoya

Departamento de Matemáticas
Universidad Nacional de Colombia, Bogotá

Email: jamontoyaa@unal.edu.co

David Casas
Departamento de Matemáticas

Universidad Nacional de Colombia, Bogotá
Email: dfcasast@unal.edu.co

Abstract—In this work we study some aspects of state-
complexity related to the very famous Sakoda-Sipser problem.
We study the state-complexity of the regular operations, we
survey the known facts and, by the way, we find some new and
simpler proofs of some well known results. The analysis of the
state of art allowed us to find a new and meaningful notion:
Real-state processing. We investigate this notion, looking for a
model of deterministic finite automata holding such an interesting
property. We establish some preliminary results, which seem to
indicate that there does not exists a model of deterministic finite
automata having real-state processing of regular expressions, but,
on the other hand, we are able of exhibiting a deterministic model
of finite automata having real-state processing of star free regular
expressions.

I. INTRODUCTION

It is known that nondeterministic finite state automata
(1NFAs) are as powerful as deterministic finite state automata
(1DFAs), in the sense that 1NFAs can only recognize regular
languages. It is also known that 1NFAs are more powerful
than 1DFAs, because 1NFAs cannot be simulated by 1DFAs
with a polynomial overhead in the number of states. Sakoda
and Sipser [1] asked if 1NFAs can be simulated by two-way
deterministic finite state automata (2DFAs) with a polynomial
overhead in the number of states. It is one of the questions in-
cluded in the, so called, Sakoda-Sipser Problem. The Sakoda-
Sipser question is a question about: how, when and to which
extent can two-wayness replace nondeterminism? It would
be great news if such a question would have an affirmative
answer. It is the case, given that 1NFAs (and 2NFAs) are
unreliable automata which cannot be used in practice. But,
in despite of their purely theoretical value, 1NFAs have some
remarkable features, which we would like to have in some
model of reliable and implementable finite state automata.
Thus, we think that the Sakoda-Sipser question is a special
case of the following more general question: how, when and to
which extent can deterministic finite state automata with added
abilities be as powerful and efficient as their nondeterministic
counterparts?

Before attacking the later question we will have to consider
the following one: which are those remarkable features of non-
deterministic finite automata? We wont provide an exhaustive
list of remarkable characteristics, but we would like to point
out, and to discuss, below, one of those features which has
captured our attention.

If one is asked to prove that the set of regular languages is
closed under the regular operations, it is very easy to figure out
such a proof, if one is allowed to use 1NFAs. Things become
harder if one is obligated to employ, in the proof, the weaker
model of 1DFAs. Moreover, such an easy proof using 1NFAs
yields a linear time algorithm, called Thompson’s algorithm,
which, on input α (where α is a regular expression), computes
an O (|α|)-state 1NFA recognizing the language L (α) .

We say that a model of deterministic finite automata has
Thompson property, if and only if, there exists a polynomial
time algorithm, which, on input α, computes an O (|α|c)-
state automaton within the model, and which recognizes the
language L (α), (where c is some fixed constant).

Thus, we have that Thompson property holds for 1NFA,
while it is very easy to prove it does not hold for 1DFA. We
consider that Thompson property is a remarkable feature of
1NFAs, given that it allows those automata to efficiently pro-
cess regular expressions. Take into account that the processing
of regular expressions is (one of) the main task(s) assigned to
finite automata. Unfortunately, the nondeterministic nature of
1NFAs makes them become a nonimplementable solution to
the aforementioned problem. Thus, it would be great news if
we could exhibit a deterministic model of automata for which
Thompson property holds.

In this work we investigate the following question: how,
when, and to which extent is it possible to define a model
of deterministic finite automata for which Thompson property
holds?

Remark 1: We understand The Sakoda-Sipser problem as
the question: does there exist a deterministic model of finite
state automata which can efficiently simulate nondeterministic
automata? It is clear that a positive answer to Sakoda-Sipser
implies that our problem can be positively solved. On the other
hand, if we could give a positive answer to our question,
we could not immediately conclude that Sakoda-Sipser also
has a positive answer. It is the case because nondeterministic
automata are exponentially more succinct than regular expres-
sions [2].

Remark 2: We assume that the reader knows the definition
of the basic models of finite state automata such as DFAs,
NFAs, 2DFAs an so on. The interested reader can consult the
excellent reference [3].

Organization of the work and contributions. This work

978-1-4673-9143-6/15/$31.00 c©2015 IEEE

2015 XLI Latin American Computing Conference (CLEI)

is organized into six sections. In section one we introduce the
problem that we study in this paper, introducing the notion
of real-state processing. In section two we consider the model
of DFAs, and we present simpler proofs of some well known
results. In section three we study 2DFAs, and we prove that
those automata do not have real-state processing of regular
operations. Moreover, we prove a strict superpolynomial sep-
aration with respect to the model of 1NFAs. In section four
we consider a model of two-way pebble automata, and we
prove that it is not able of real-state processing concatenations.
In section five we introduce a new model of multiplebble
automata, and we prove that it has real-state processing of
star-free regular expressions. We conclude, in section six, with
some concluding remarks.

II. NONDETERMINISTIC FINITE STATE AUTOMATA AND
THOMPSON PROPERTY

A model of finite automata is an infinite set C of state-
based recognition devices (automata), that accepts the regular
languages, it means that given a regular language there must
exist an automaton in C recognizing the language, and given
M∈ C, the language recognized by M is regular.

We are interested in standard models of finite automata,
whose members are constituted by a finite set of internal
states, a transition function and, perhaps, some other (finite)
resources. For all those models the following definition makes
sense.

Definition 3: We say that a model of finite automata, say C,
solves the problem of efficiently processing the regular expres-
sions if and only if there exists a polynomial time algorithm T ,
which, on input α (where α is a regular expression), computes
Mα ∈ C such that:
• L (Mα) = L (α) .
• |Q (Mα)| ∈ O (|α|c) , where Q (Mα) denotes the set of

internal states of automatonMα, the symbol |α| denotes
the length of α, and c is some positive constant.

Does there exist a model of finite automata that solves the
problem of efficiently processing the regular expressions? Yes,
there is at least one such model, it is the model of 1NFAs.
There exists a linear time algorithm T which, on input α,
outputsMα, a 1NFA such that L(α) = L(Mα), and such that
|Q (Mα)| ∈ O (|α|) . Algorithm T is known as Thompson’s
Algorithm [4], and it is a naive algorithm that exploits the
recursive definition of regular expressions plus the following
crucial fact: there exists three constants CU , C· and C∗, such
that given two 1NFAs, say M and N , one can compute in
linear time three 1NFAs S∪,S · and S∗ such that:

1) S∪ accepts the language L (M) ∪ L (N) , and the
number of its states is equal to n+m+ C∪.

2) S · accepts the language L (M) ·L (N) , and the number
of its states is equal to n+m+ C·.

3) S∗ accepts the language L (M)
∗
, and the number of its

states is equal to n+ C∗.
It is easy to check that the above three facts guarantee that

the output of Thompson algorithm, which is the automaton

Mα, satisfies the condition |Q (Mα)| ∈ O (|α|). It is also easy
to check that weaker conditions (as for example |Q (S∪)| ≤
2n + m + C∪) are not enough to guarantee the existence
of a Thompson Algorithm. We say that Thompson Property
holds for C, if and only if, a naive algorithm exploiting the
recursive definition of regular expressions can be put to work
within the state constraint |Q (Mα)| ∈ O (|α|c) . For which
models of automata does Thompson property holds? We wont
characterize those models, but, to begin with, we will exhibit
a condition that guarantees that this elusive property actually
holds.

Definition 4: We say that C has real-state processing1 (real-
state conversion) of regular operations if and only if there
exists three constants CU , C· and C∗ such that given two C-
automata, say M and N , with m and n states (respectively),
one can compute in polynomial time three C-automata S∪,S ·
and S∗ such that:

1) S∪ accepts the language L (M) ∪ L (N) , and the
number of its states is equal to m+ n+ C∪.

2) S · accepts the language L (M) ·L (N) , and the number
of its states is equal to m+ n+ C·.

3) S∗ accepts the language L (M)
∗
, and the number of its

states is equal to m+ C∗.
We have
Proposition 5: If C has real-state processing of the regular

operations, then Thompson property holds for C
From now on, we will be studying the following problem
Problem 6: (The Real-State Processing Problem) Does

there exists a deterministic model of finite automata which
has real-state processing of the regular operations?

III. DETERMINISTIC ONE-WAY FINITE AUTOMATA

The first model of deterministic automata that we will
consider is the standard model of 1DFAs. We count, in this
model, with a powerful tool for lowerbounding the state
complexity of a given regular language, it is Myhill-Nerode
theorem.

Definition 7: Given an alphabet Σ, and given a language
L ⊂ Σ∗, we define an equivalence relation RL ⊂ Σ∗ ×Σ∗ in
the following way: given x, y ∈ Σ∗, we have that xRLy if and
only if for all w ∈ Σ∗ it happens that xw ∈ L⇐⇒ yw ∈ L.

Theorem 8: (Myhill-Nerode)
L ⊂ Σ∗ is a regular language if and only if the quotient

Σ∗

RL
is finite. Moreover, if the language L is regular, then a

minimal 1DFA recognizing L has | Σ
∗

RL
| states.

For a proof see [3].
We can use Myhill-Nerode theorem to lowerbound the state-

complexity of unions in this model. Next result is part of the
folklore of automata theory, but the proof of the lower bound
is neither trivial nor easy to find in the standard references,
we include it for the sake of completeness.

Lemma 9: (upper and lower bounds for unions)
1) Let N be a 1DFA with n states, and let M be a

1DFA with m states (over the same input alphabet), the

1In analogy with the notion of real-time

2015 XLI Latin American Computing Conference (CLEI)

language L(N)∪L(M) can be recognized by an 1DFA
with at most nm states.

2) There exists a sequence of regular languages, say
(Pn)n≥1, such that for all n ≥ 1, the language Pn can
be accepted by an 1DFA with n states, but such that
for infinitely many pairs (n,m) , the language Pn ∪Pm
requires nm states.

Proof. Given N and M, like in the statement of item 1, we
define a third automaton U as follows:

• QU = QN ×QM.
• q0U = (q0N , q0M).
• δU : (QN × QM) × Σ → QN × QM is defined in the

following way.

δU ((qN , qM), x) = (δN (qN , x) , δM (qM, x)).

• AU = (AN ×QM) ∪ (QN ×AM).

Automaton U has nm states, and it is easy to check that it
recognizes the language L(N) ∪ L(M).

Given n ≥ 1, we set

Pn = {x ∈ Σ∗ : |x| ≡ 0 (mod (n))}

We have that x ≡Pn y if and only if |x| ≡ |y| (mod (n)),
and hence we know that there exists a 1DFA with n states
recognizing the language Pn. Now, we consider the sequence
{P cn}n≥1 . Given n ≥ 1, there exists a 1DFA with n states
recognizing the language P cn. We can use Chinese remainder-
ing to prove that P cn ∪ P cm requires lcm(n,m) states. Now, if
we suppose that n and m are coprime (i.e. gcd (n,m) = 1)
we get the lower bound nm.

Corollary 10: 1DFAs do not have real-state processing of
unions.

We know that real-state processing implies Thompson prop-
erty, but given that the converse is not true it is still possible
that Thompson property holds for 1DFAs. It is easy to prove
that it is not the case.

Proposition 11: Thompson property does not hold for
1DFAs.
Proof. Suppose that Thompson property holds for 1DFAs, then
given a regular expression α there must exist a 1DFA with
O (|α|) states and which recognizes the language L (α) . We
know that it is not possible because regular expressions are
exponentially more succinct than 1DFAs.

We used in the above proof that regular expressions are
exponentially more succinct than 1DFAs, it means that there
exists a sequence of regular languages {Lk}k≥1, and there
exists a constant C > 1 such that:

• For all k, there exists a regular expression αk which
denotes the language Lk and whose length is linear in
k.

• Given k ≥ 1, a minimal 1DFA accepting Lk requires
Ω
(
Ck
)

states.

There are many examples of sequences that behave this way,
we include a classical example, which will be used again in

the next sections. Let Σ = {0, 1}, let k ≥ 1 and let Lk be the
language defined by

Lk = {x ∈ Σ∗ : x[|x| − k + 1] = 1}

That is: language Lk is the set of all strings such that the
position that is placed at k positions from the right end is
filled with a 1.

Let k≥1, it is easy to check that a regular expression
denoting the language Lk is the expression (0∪1)∗1(0∪1)k−1,
notice that the length of this expression is equal to 5+(k−1)3.
Now consider the equivalence relation ≡k determined by the
language Lk. We have that x, y are in the same equivalence
class if and only if the last k characters of both strings are all
equal. Then, we can claim that there are at least 2k equivalence
classes, and it implies that a minimal 1DFA recognizing Lk
has at least 2k states.

Thus, we know that the model of 1DFAs is not the right
model, Thompson property does not hold for it, given that it
is not able of real-state processing unions (which seems to be
the more tractable of the regular operations) and, as we will
see, it behaves even worse when it comes to the processing of
concatenations.

Next result is a well known result [5], but we have found a
new proof which seems to be very much simpler.

Theorem 12: The 1DFA-state complexity of concatenation
is at least exponential.
Proof. Let Σ = {0, 1}, and let {An}n≥1 be the sequence of
languages defined by:

An = {x ∈ Σ∗ : |x| ≥ 0}

Notice that {An}n≥1 is a constant sequence (all the lan-
guages are the same). Finally, we introduce a second sequence
{Bn}n≥1 , where given k ≥ 1 the language Bk is equal to

{x ∈ Σ∗ : x[1] = 1 & |x| = k}

We can check that for each n, and for each k the equality
An ·Bk = Lk holds. It is also easy to check that:

1) For all n, language An can be recognized using an
automaton with an unique internal state.

2) For all n, language Bn can be recognized using an
automaton with n+ 2 states.

3) For all n, language Ln requires 2n states.
Altogether, we get an exponential lower bound for the

processing of concatenations employing 1DFAs.

IV. DETERMINISTIC TWO-WAY FINITE STATE AUTOMATA

In this section we study the model of two-way terminating
deterministic finite state automata (2DFAs, for short).

Let M = (Q,Σ, q0, F, δ) be a 1DFA, and let x =
x1x2 . . . xn be a string of size n. The computation of M,
on input x, takes n time units which is the time required
by the workhead to reach the right end of the input. Now
suppose that M is a two-way deterministic finite automaton,
the computation of M, on input x, could be infinite. We will
avoid this possibility restricting ourselves to studying two-
way terminating finite state automata, which are the two-way

2015 XLI Latin American Computing Conference (CLEI)

deterministic finite automata that halt on all their inputs. There
is not loss of generality if we restrict the investigation to the
later type of two-way automata, it is the case given that:

1) There is no real loss of computation power: the restricted
model of two-way terminating automata can recognize
all the regular languages (any 1DFA is a 2DFA which
never moves leftward).

2) There is not a significant blow-up in state-complexity:
any two-way deterministic automaton with n states can
be simulated by a 2DFA with 4n+ 1 states [6].

It is known that 2DFAs are exponentially more powerful
than 1DFAs. To check this, it is enough to consider the
sequence {Ln}n≥1 introduced in the proof of theorem 12,
notice that Ln can be recognized employing a 2DFA that uses
n + 3 states, while any 1DFA recognizing Ln requires 2n

states. Interesting enough, it can be proved that 2DFAs could
be exponentially more powerful than 1NFAs. This fact was
known by Sakoda and Sipser [1], who proved the result using
a sequence of languages which has been instrumental in the
study of The Sakoda-Sipser problem (the sequence defining
The Liveness Problem [1]). We will include a proof of this fact,
which is based on a very much simpler sequence of languages.

Theorem 13: There exists a sequence of regular languages,
say {Mn}n≥1 , such that.

1) Given n ≥ 1, there exists a 2DFA recognizing Mn which
uses at most 4n+ 3 states.

2) Given n ≥ 1, it happens that any 1NFA recognizing Mn

requires at least 2n states.
Proof. Given n ≥ 1, we set Σn = {1, . . . , n}. Given P =
{i1, ..., ik} ⊆ [n] , we define LnP = {i1, ..., ik}∗ . Finally, given
n ≥ 1, we define Mn as the language{

w ∈ Σ∗n : ∃P
(
w ∈ LnP 0Ln[n]−P

)}
It is not hard to figure out a terminating 2DFA with 4n + 3
states recognizing the language Mn. Now, we will prove that
any 1NFA recognizing Mn requires 2n states. Each P ⊆ Σn
can be represented by a string wP which corresponds to
write down the elements of P in increasing order. Thus,
we have 2n different pairs of strings, the pairs in the set{

(wP 0, w[n]−P) : P ⊆ [n]
}
, satisfying the following two con-

ditions:
1) wP 0w[n]−P ∈Mn.
2) If P 6= Q, the string wP 0w[n]−Q does not belong to

Mn.

The existence of such a set of pairs, of size 2n, implies that
any 1NFA recognizing the language Mn has at least 2n states
[7].

Problem 14: Our proof, as well as Sakoda-Sipser’s proof,
employs increasing alphabets. It is natural to ask if the same
exponential separation can be achieved over a fixed alphabet.
Does a similar separation hold in the unary case?

Thus, the model of 2DFAs seems to be powerful enough
as to be able of efficiently simulating nondeterministic finite
automata. Do 2DFAs have real-state processing of regular
operations?

Theorem 15: LetM1 be a 2DFA with m states and letM2

be a 2DFA with n states, there exists a 2DFA that recognizes
the language L(M1)∪L(M2), using no more than m+n+1
states.
Proof. Suppose that Qi is the set of states of Mi, i = 1, 2.
We claim that one can construct a 2DFA N which recognizes
the language L(M1) ∪ L(M2), and such that the set of its
states is equal to Q1 ∪ Q2 ∪ {q} (we can suppose, without
loss of generality, that Q1 and Q2 are disjoint sets and that
q /∈ Q1 ∪ Q2). The computation of this automaton begins in
the initial state of M1, and it proceeds by simulating M1

until a final state is reached (either an accepting or a rejecting
state), if the final state reached is an accepting state, automaton
N halts and accepts the input, otherwise it enters the special
state q, and begins to look for the left end of the input. Once
the left end is reached, automaton N begins to simulate the
computation of M2. Along this second phase a final state
must be eventually reached, if this final state is accepting the
automaton accepts, otherwise it rejects the input.

Now, we consider the concatenation operation. Next result
is taken from [5]:

Theorem 16: Let m,n ≥ 1, the language Tm =
L
(
am−1(am)∗

)
can be recognized by an m-state 1DFA, but

if n and m are coprime the concatenation language Tn · Tm
requires mn states.

The above lower bound indicates that 2DFA are unable of
real-state processing concatenations, even in the unary case.
Thus, it seems that real-state processing is something that is
very hard to achieve. We will relax our problem a little bit,
considering the following weaker question:

Problem 17: (The real-state processing problem for star
free expressions)

Does there exist a model of deterministic finite automata
which has real-state processing of star free expressions?

We will investigate this new problem in the remaining of
the paper, but before of this we will discuss the existence of a
superpolynomial separation (related to problem 14) that holds
in the unary case.

Definition 18: Landau’s function
Landau’s function is the function g : N→ N defined by

g(n) = max{lcm(p1, . . . , pk) : k ≥ 1 & p1 + · · ·+ pk ≤ n}

Landau introduced this function in the study of some
number theoretical problems, he proved the asymptotic lower
bound g (n) ≥ e(1+o(1))

√
nln(n). Next result is taken from [5].

Theorem 19: The language Rn = L
(
ag(n)−1(ag(n))∗

)
can

be recognized employing a n-state 2DFA, but every 2DFA
accepting R∗n has at least (g(n)− 1)2 states.

The first corollary that we could get from the above theorem
is that 2DFAs cannot real-state process the Kleene star. We
can get a second interesting corollary, which gives a definitive
answer to problem 14.

Corollary 20: Unary 2DFAs are superpolynomially more
succinct than unary 1NFAs.
Proof. Let h1 (n) be the number of states of a minimal 1NFA
recognizing the language Rn, and let h2 (n) be the number

2015 XLI Latin American Computing Conference (CLEI)

of states of a minimal 1NFA recognizing the language R∗n.
Notice that h1 (n) = h2 (n) . We define g1 (n) as the number
of states of a minimal 2DFA recognizing the language Rn,
and we define g2 (n) as the number of states of a minimal
2DFA recognizing the language R∗n. Notice that

g1 (n) ≤ n < e(1+o(1))
√
nln(n) ≤ g2 (n)

Now, we use that any n-state unary 1NFA can be simulated
by a 2DFA with a (at most) quadratic overhead in the number
of states [8]. Thus, we have that

h1 (n) ≥ e
(1+o(1))

√
g1(n) ln(g1(n))

2

It is clear that a function e
(1+o(1))

√
m ln(m)

2 is superpolyno-
mial in m, and then the corollary is proved.

Remark 21: Corollary 20 shows that, in the unary world,
2DFAs behaves better than 1NFAs when it comes to the
processing of regular operations. It should not be considered
a big surprise: recall that 2DFAs behaves better than 1NFAs
when it comes to the processing of the intersection and
complementation operations (see [3]), which are nonregular
operations that are analogous to the three basic regular oper-
ations.

V. DETERMINISTIC TWO-WAY PEBBLE AUTOMATA

Star free regular expressions are the regular expressions that
can be constructed using only unions and concatenations, these
expressions constitute an important class of expressions: these
are the regular expressions that denote the finite languages.
One could think that finite languages are boring, but he has
take into account that these are the formal languages that are
most used in the theory of programming languages (the area
where the efficient processing of regular expressions becomes
an important task). Does there exist a deterministic model of
finite automata which has real-state processing of the star free
regular expressions?

The models of automata studied so far have several different
features but a common feature: they cannot write on their
tapes. If we add those automata the ability of writing on their
tapes, we could leave the regular world. There exists some
very weak forms of writing, which does not force 2DFAs to
leave the regular world, one important example is the writing
ability provided by a single pebble. Ibarra et al [9] studied a
model of pebble automata that accepts the regular languages,
Ibarra automata are two-way deterministic automata provided
with a single pebble which is used by those automata to mark
cells on their tapes (for definitions see [9]). We use the symbol
1p2DFA to denote the class of Ibarra automata that adhere to
the following further restriction:

LetM be a 1p2DFA. It has two initial states, the authentic
initial state which is called the L-initial state, and a second
special state which is called the R-initial state. Suppose that
cell i is the current position of the pebble, and suppose that
the workhead is located on cell j, with j < i. Then, the
workhead is forced to stay within the first i − 1 cells until
the automaton reaches a transition state. Transition states are

divided into accepting and rejecting states. Once a transition-
accepting state is reached, the automaton looks for the pebble,
locates it without picking it up, changes its state to the R-
initial state and begins to work on the right side of the tape.
On the other hand, if a transition-rejecting state is reached,
the automaton looks for the pebble, picks it up, advances one
step to the right, places the pebble on the next to the right
cell, looks for the leftend and changes its initial state to the
L-initial state. The pebble can also be picked up from the
right, but it can happen only if the automaton has reached a
transition-rejecting state while being on this side of the tape.
Once the automaton reaches a transition-accepting state, while
being working on the right, it halts and accepts the input. On
the other hand, if the transition state is rejecting, the automaton
looks for the pebble, locates it and picks it up, moves one step
to the right, places the pebble on this cell (the next to the right
cell), looks for the left end of the tape and changes its internal
state to the L-initial state. Thus, our 1pDFAs use the pebble
only to cut the tape into two disjoint segments. When the
pebble is placed on the tape, those automata work first on the
left segment, and then on the right segment. Moreover, their
computations are divided into completely independent stages,
the transition between two successive stages being given by
moving the pebble one step to the right. Notice that those
automata are tailor-made to process the concatenation of two
regular languages.

Our restricted model of pebble automata accepts the regular
languages: this model cannot accept nonregular languages
because it is weaker than the Model of Ibarra et al, and, on
the other hand, the model can accept all the regular languages
because a 2DFA is a 1p2DFA that never uses its pebble.

It is very easy to check that 1p2DFAs are able of real-state
processing unions. It could happens that the pebble (this new
ability) allows those automata to real-state process concatena-
tions, but first we have to ask: do those very restricted pebbles
yield some computation power?

Definition 22: Given C and D, two different models of
automata, we say that C cannot be linearly-simulated by D
if and only if there exist a sequence of regular languages, say
{Un}n≥1, a function f : N→ N and a positive real number
ε such that for all n there exists a C-automaton with f (n)
states recognizing the language Un, while any D-automaton
recognizing the same language requires Ω

(
f (n)

1+ε
)

states.
We prove that 1p2DFAs cannot be linearly-simulated by

2DFAs, even in the unary case
Theorem 23: 1p2DFAs cannot be linearly-simulated by

2DFAs, even in the unary case.
Proof. Suppose that we have two regular languages, say L and
T , and suppose that we have a n-state 2DFA N recognizing
the language L, and a m-state 2DFA M recognizing the
language T . It is not hard to figure out a 1p2DFA recognizing
L · T and employing O (n+m) states. To achieve the upper
bound one can use the pebble in the following way: suppose
that the input is w, and suppose that the automaton has placed
the pebble on cell i, then it checks if w [1...i− 1] belongs to

2015 XLI Latin American Computing Conference (CLEI)

L, and then if it is the case it checks if w [i... |w|] belongs to
T. If w pass both tests the automaton halts and accepts the
input; otherwise it looks for the pebble, picks it up, places it
on the next to the right cell and begins once again.

Thus, 1p2DFAs can real-state process the concatenation of
two 2DFAs. Now, given n ≥ 1, we set Tn = L

(
an−1(an)∗

)
.

We know that Tn can be recognized employing a 2DFA with
n states. Hence, given n,m ≥ 1 the language Tn · Tm can be
recognized by a 1p2DFA with O (n+m) states. On the other
hand, we know that if n and m are coprimes (gcd (n,m) =
1) any 2DFA recognizing the language (Tn · Tm) requires
Ω (nm) states.

Remark 24: It is important to remark that a stronger separa-
tion result is already known. Let {pi}i≥1 be the enumeration
of the prime numbers in ascending order. Given m ≥ 1,
we set Pm =

∏
i≤m

pi, and we set Lm =
{

1l : l < Pm
}
.

Geffert and Istonova [10] proved that the sequence {Lm}m≥1

requires Ω
(
2m log(m)

)
states over the model of 2DFAs, but

that it can be recognized using at most O
(
m2 log (m)

)
states

over a model of 1p2DFAs studied by them. We have included
the above proof because of three reasons: because our proof
is a very simple proof which has been obtained thanks to
our analysis of real-state conversion, (which seems to be a
meaningful notion that will allow us to discover new proofs
and new results), because their model of 1p2DFAs is stronger
than our model (and then their proof could not hold in our
case), and finally because we will get an interesting corollary
(corollary 25) from the above proof:

Corollary 25: 1p2DFAs can real-state process the concate-
nation of two 2DFAs.

The above corollary is not sufficient for our purposes, we
have to ask: are 1p2DFAs able to real-state process concatena-
tions of 1p2DFAs? Notice that if we try to use the naive idea
used in the above proof, we will promptly realize that we need
three pebbles. Are we allowed to use more than one pebble? It
is not hard to figure out a two-pebble automaton recognizing
the language of palindromes, and it is well known that this
language is not regular. Thus, if we want to consider some
type of automata using more than one pebble, we will have
to impose some further constraints on the way those automata
can handle their pebbles. We follow this direction of research
in the next and last section, but before of this we would like to
conclude with our analysis of concatenations over the model
of 1p2DFAs.

Given n, we use the symbol Hn to denote the language
L
(
(an)

∗)
.

Lemma 26: Let n,m be two integers, which are coprime, the
number of states that are necessary to recognize the language
Hn ·Hm using 2DFAs is at least nm− n+m− 1.
Proof. Given an unary regular language L, and given M, a
minimal DFA accepting L, if the tail of M is equal to l,
then a minimal 2DFA recognizing L has at least l − 1 states.
Notice that the language Hn ·Hm is cofinite, and notice that
the largest string that is not contained in this language is the
string amn−(m+n). Then, we have that the tail of a minimal

DFA recognizing Hn ·Hm is equal to mn−(m+ n), and then
we have that any 2DFA recognizing this language has at least
nm− n+m− 1 states.

Theorem 27: Let n,m, s be three different prime numbers,
we have that any 1p2DFA recognizing the language Hn ·Hm ·
Hs requires Ω (min {nm,ms, ns}) states.
Proof. Let M be a minimal 1p2DFA accepting the language
Hn · Hm · Hs. Given w ∈ {a}∗ , string w determines a
unique computation of the automaton M, which is divided
in at most |w| stages. If w ∈ Hn · Hm · Hs, it becomes
accepted only because of the last stage of the computation,
which begins when automaton places its pebble on a given
cell, say i, dividing in this way the input string into two strings
w [1...i− 1] and w [i... |w|] .

We define

L =
{
w [1...i− 1] : w ∈ {a}∗ & αM (w, i)

}
and

T =
{
w [i... |w|] : w ∈ {a}∗ & β M (w, i)

}
where αM (w, i) is supposed to mean:

If the computation of automaton M, on input w, begins
with the pebble placed on cell i, the workhead located on the
left-end of the input and the internal state of M being equal
to the L-initial state, thenM will reach a transition-accepting
state before picking up the pebble.

And βM (w, i) is supposed to mean:
If the computation of automaton M, on input w, begins

with the pebble placed on cell i, the workhead located on cell
i, and the internal state ofM being equal to the R-initial state,
then M reaches a transition-accepting state.

We have that M accepts w at the ith stage if and only if
w [1...i− 1] ∈ L, and w [i... |w|] ∈ T. Therefore, we have that
M accepts w if and only if w ∈ L · T, and it is equivalent
to claim that Hn · Hm · Hs = L · T. Notice that L and T
are regular languages. One can use the primality of n,m and
s to prove that there exists a regular language Ω, and that
there exist x, y ∈ {n,m, s} (with x 6= y) such that either
L = Hx · Hy · Ω or T = Hx · Hy · Ω. We can suppose,
without loss of generality, that L = Hx ·Hy · Ω. Notice that
one can useM, without the pebble, to recognize the language
L, it implies that the number of states of M is bigger than
the minimum number of states that are necessary to recognize
L using 2DFAs. It is easy to check that the state complexity
of unary 2DFAs can only increase with concatenations, and
then the number of states of automaton M is bigger than the
number of states that are required to recognize the language
Hx · Hy using 2DFAs. Thus, we have that M has at least
Ω (xy) states. Therefore, we get the lower bound.

Corollary 28: 1p2DFAs do not have real-state processing of
concatenations.

VI. DETERMINISTIC TWO–WAY MULTIPEBBLE
AUTOMATA

So far, we have surveyed the most popular models of finite
state automata, we showed that all those models, but the

2015 XLI Latin American Computing Conference (CLEI)

model of 1NFA, are unable of real-state processing regular
expressions. It seems that real-state processing is not achiev-
able within the world of deterministic finite state automata.
Therefore we decided to relax our goal: we would be happy
if we could find a model that is able of efficiently processing
all the star free regular expressions (a model that is able of
real-state processing unions and concatenations).

In this section we study the ultimate model of deterministic
finite state automata, which is the model of directed multipeb-
ble deterministic two-way finite automata (dp2DFA, for short)
introduced below. We prove that it is more powerful (succinct)
than the model 1p2DFA, and we prove that this new model
holds real-state processing of concatenations and unions (real-
state processing of star free regular expressions).

A directed multipebble deterministic two-way finite au-
tomata is a pebble automaton provided with a fixed number
of pebbles which can be larger than 1. We mentioned before
that one can construct a two pebble automaton recognizing
palindromes, hence we have to impose some strong restrictions
on the way those automata can handle their pebbles.

Suppose that we have a dp2DFA with k pebbles, say
P1, ..., Pk, which is processing the input string w, and suppose
that it has placed its first i pebbles on cells j1, ..., ji. To begin,
we demand that j1 ≤ j2 ≤ ... ≤ ji and that the pebbles
were placed one by one respecting the order of their labels
(which are 1, ..., k−1 and k). We suppose that the workhead is
placed on the interval containing the string w [ji−1...ji − 1] .
It must stay on this cell interval till it reaches a transition
state. Depending on the transition state it reaches, it makes
one out of two things: either the automaton looks for Pi,
picks it up, places it on the next to the right cell and begins
to work on the substring w [ji−1 + 1...ji] ; or it looks for
Pi, locates it, moves one step rightward, places Pi+1 on cell
ji + 1 (thus, ji + 1 = ji+1) and begins to work on the string
w [ji...ji+1 − 1] .

It is not hard to formalize the definition of our dp2DFAs,
nevertheless we will omit writing down this definition because
it happens to be a little bit cumbersome. The key idea is that
those automata used their k pebbles to partition their tapes
into k+ 1 segments, and then they work on each one of those
segments in an independent and sequential way. Moreover,
they are designed to consider all the possible partitions of the
input string into k+1 substrings. Thus, one could say that those
automata are tailor-made to deal with concatenations. We will
see that it is actually the case, we will see that those automata
have real-state processing of concatenations, but before of this
we have to check that this new class of automata accepts the
regular languages.

Theorem 29: dp2DFA accept the regular languages.
Proof. dp2DFAs accept all the regular languages because a
2DFA is a dp2DFA that never uses its provision of pebbles.
Now, we check that those two-way automata, provided with
multiple pebbles, can only accept regular languages. Noa
Globerman and David Harel studied in [11] a different model
of multipebble automata which, they proved, accept the regular
languages. A Globerman-Harel automaton is a two-way au-

tomaton with k pebbles (k ≥ 0), say P1, . . . , Pk, that adheres
to the following restrictions:

1) Pi+1 may not be placed unless Pi is already on the tape,
and Pi may not be picked up unless Pi+1 is not on the
tape (Thus the pebbles are placed and picked up in a
LIFO style).

2) Between the time Pi+1 is placed and the time either
Pi is picked up or Pi+2 is placed, the automaton can
traverse only the substring located between the current
location of Pi and the end of the input word that lies
in the direction of Pi+1. Moreover, in this substring, the
automaton can act only as a 1p2DFA using Pi+1 as its
unique pebble. In particular, it is not allowed to lift up,
place, or even sense the presence of any other pebble.

We notice that dp2DFAs adhere to the restrictions imposed
on Globerman-Harel automata. Then, a dp2DFA automaton
cannot recognize a nonregular language

Can we exploit the multiple pebbles to get real-state
processing of concatenations? Before studying any possible
answer to this question a warning is in order: we are using
a new computational resource, the pebbles, which must be
quantified.

Definition 30: Let ◦ ∈ {∪, ·} , we say that dp2DFAs real-
state process operation ◦ if and only if there exist a constant C◦
and a polynomial p (X,Y) such that given two dp2DFAs, say
M and N , there exists a dp2DFA K recognizing the language
L (M) ◦ L (N) and such that:

1) The number of states of K is bounded by |QM|+|QN |+
C◦.

2) The number of pebbles of K is bounded by
p (#M,#N) , where #X denotes the number of peb-
bles of automaton X (X ∈ {M,N}).

Notice that dp2DFA can real-state process unions. Thus, we
have to focus our attention on concatenations. We will prove
that dp2DFAs are able of real-state processing concatenations.
First a warm up.

Proposition 31: Let m,n, s be three natural numbers, the
language Hm ·Hn ·Hs can be recognized employing a dp2DFA
with two pebbles and n + m + s + C states, where C is a
constant that does not depend on the triple (n,m, s) .
Proof. First at all we recall that given n ≥ 1, the language
Hn can be recognized by a 2DFA with n states. Thus, we
pick three 2DFAs Mm,Mn and Ms recognizing the three
languages Hm, Hn and Hs, and such that each one of those
three automata has n,m and s states (respectively). Now we
construct a dp2DFA N with two pebbles P1 and P2, and
which merges together the three automata introduced before.
Automaton N works, on input w, as follows:

Suppose that N has placed P1 on cell i, then it checks if
the string w [1...i− 1] belongs to Hm. If it is not the case it
enters a transition state, looks for the pebble, enters the right
side, picks up the pebble, places it on the next to right cell and
begins once again. Otherwise (i.e. if w [1...i− 1] belongs to
Hm), automaton N enters a second different transition state
and looks for the right portion of the input string. Notice that,

2015 XLI Latin American Computing Conference (CLEI)

from the exact moment N enters the right portion of the tape
till it picks up the pebble P1 once again, it is forced to work on
the substring w [i... |w|] . Along this period of time automaton
N uses P2 to simulate the pair Mn and Ms, while checking
if w [i... |w|] belongs to Hn · Hs. If w [i... |w|] ∈ Hn · Hs,
automaton N halts and accepts the input, otherwise it picks
up pebble P2, picks up pebble P1, advances one step to the
right, places P1 on this cell and begins once again.

We get from the above proposition an interesting corollary
Corollary 32: dp2DFA cannot be linearly simulated by

1p2DFA, even when restricted to the unary case.
Remark 33: We can elaborate on the proof idea used in

theorem 27, to get the following more general result: Let
k ≥ 2, and let m1, ...,mk be k different prime numbers
such that no one of them is a positive integer combination of
the others, the language Hm1

· ... · Hmk
can be recognized

using an automaton with m1 + ... + mk states and k − 1
pebbles, while any dp2DFA with k − 2 pebbles requires
Ω (min {mimj : i, j ≤ k and i 6= j}) states. It implies that for
all k ≥ 2, directed pebble automata with k pebbles cannot be
linearly simulated by directed pebble automata with k − 1
pebbles. It implies that each additional pebble can represent
an important gain in computing power. It is important to stress
that Globermann and Harel proved a similar result for its
model of multipebble automata [11].

Theorem 34: dp2DFAs are able of real-state processing
concatenations.
Proof. We only have to elaborate on the proof idea that
was used in proposition 31. The rough idea is the following
one: suppose that we have two dp2DFA, say M1 and M2,
each with ni states and ki pebbles (i = 1, 2). We define a
new dp2DFA denoted with the symbol N . Automaton N has
n1 + n2 + C states, k1 + k2 + 1 pebbles and works as fol-
lows: Suppose that it has detected that the prefix w [1...i− 1]
belongs to L (M1) , suppose that it has placed the first k1 + 1
pebbles on the tape and suppose that the last one is placed on
cell i. From this exact moment till the moment Pk1+1 is picked
up again, it works on the suffix w [i... |w|] while simulating
the automaton M2 with the help of the remaining k2 pebbles

It seems that dpDFA cannot real-state process the Kleene
star. If we try to use the naive idea employed in the case
of concatenations we will promptly realize that we have to
use an unbounded number of pebbles. An unbounded number
of pebbles seems to be a not admissible resource because ,
among other things, we need to include some special states
in order to handle the provision of pebbles, and it happens
that the number of those states increases with the number of
pebbles. Thus, such a model of pebble automata seems to be
nonfeasible (seems to be nonfinite).

We conjecture that there does not exist a feasible determin-
istic model of finite automata for which Thompson property
holds. Our conjecture implies that there does not exist a
feasible deterministic model of finite automata that is able
of real-state processing the regular operations. We have that
dp2DFAs are able of real-state processing the star free regular

expressions and it is the best result that we can achieve so
far. Thus, we have

Proposition 35: There exists an algorithm which, on input α
(where α is a star free regular expression), computes in linear
time a dp2DFA with O (|α|) states and O (|α|) pebbles that
recognizes the language L (α) .

There is a third computational resource employed by
dp2DFA which must be quantified: running time. Two-way
automata can work under different running time regimes, and
the running time of a given two-way automaton cannot be
bounded apriory. Thus, it is natural to ask about the running
times of the automata that can be obtained as outputs of the
algorithm mentioned in the statement of proposition 35. It
is not hard to check that given α, a regular expression, the
running time of Mα, which is the dp2DFA computed by the
aforementioned algorithm, belongs to O

(
n|α|

)
. Moreover, it

can be proved that given k, there exists α such that the running
time of Mα belongs to Ω

(
nk
)
.

Thus, we can conclude that the model of dp2DFAs does not
behave well when it comes to the analysis of running time.
We conclude with a conjecture

Conjecture 36: There does not exist a class of linear time
finite state deterministic automata having real-state processing
of star free regular expressions.

VII. CONCLUSION

One can argue that The Sakoda-Sipser Problem is the
question about the state-complexity of simulating a given class
of finite automata by another one. Thus, from this very general
point of view, The Sakoda-Sipser problem is a question about
comparing the state-complexity of different computational
tasks when they are analyzed through the lenses of different
models of finite automata. We chosen one specific task:
processing of regular expressions. Our choice yields a new
and meaningful notion: Real-state conversion. The analysis of
this new notion allowed us to explain, to some extent, what is
special about 1NFAs, and which are the main computational
advantages of nondeterminism when one restricts the attention
to finite automata. We could prove some preliminary results
concerning this new notion, but we feel that it deserves further
investigation.

ACKNOWLEDGMENT

The first author would like to thank Universidad Nacional de
Colombia and the support provided through the R.P. Hermes
16860.

REFERENCES

[1] W. Sakoda and M. Sipser, Nondeterminism and the size of two way finite
automata, in STOC 78 Proceedings of the tenth annual ACM symposium
on Theory of computing, 1978, pp. 275286.

[2] A. Ehrenfeucht and P. Zeiger, Complexity measures for regular expres-
sions, Journal of Computer and System Sciences, vol. 12, pp. 134146,
1976.

[3] J. Shallit, A second course in Formal Languages and Automata Theory.
Cambridge, MA: Cambridge University Press, 2009.

[4] K. Thompson, Programming techniques: Regular expression search
algorithm, Communications of the ACM, vol. 11, no. 6, pp. 419422,
1968.

2015 XLI Latin American Computing Conference (CLEI)

[5] S. Yu, Q. Zhuang, and K. Salomaa, The state complexities of some
basic operations on regular languages, Theoretical Computer Science,
vol. 125, pp. 315328, 1994.

[6] V. Geffert, C. Mereghetti, and G. Pighizzini, Complementing two-way
finite languages, Information and Computation, vol. 205, no. 8, pp.
11731187, 2007.

[7] J. Birget, Intersection and union of regular languages and state com-
plexity, Information Processing Letter, vol. 43, pp. 185190, 1992.

[8] M. Chrobak, Finite automata and unary languages, Theoretical Com-
puter Science, vol. 47, no. 3, pp. 149158, 1986.

[9] J. Chang, O. Ibarra, M. Palis, and B. Ravikunar, On pebble automata,
Theoretical Computer Science, vol. 44, pp. 111121, 1986.

[10] V. Geffert and L. Istonova, Translation from classical two-way automata
to pebble two-way automata, in 11th International Workshop on De-
scriptional Complexity of Formal Systems (DCFS 2009), Magdeburg,
Germany, Jul. 2009, pp. 131140.

[11] N. Globerman and D. Harel, Complexity for two way and multi-pebble
automata and their logics, Theoretical Computer Science, vol. 169, no.
2, pp. 161184, Dec. 1996.

