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Abstract—Image segmentation is an indispensable tool to
enhance the ability of computer systems to perform elementary
cognitive tasks such as detection, recognition and tracking. In
particular, interactive algorithms have gained much attention
lately, specially due to their good performance in segmenting
complex images and easy utilization. However, most interactive
segmentation methods rely on sophisticated mathematical tools
whose effectiveness strongly depends on the kind of image to be
processed. In fact, sharp adherence to the contours of image
segments, uniqueness of solution, high computational burden,
and extensive user intervention are some of the weaknesses of
most existing techniques. In this work we proposed two novel
interactive image segmentation techniques that sort out the
issues discussed above. The proposed methods rely on Laplace
operators, spectral graph theory, and optimization approaches
towards enabling highly accurate segmentation tools which de-
mand a reduced amount of user interaction while still being
mathematically simple and computationally efficient. The good
performance of our segmentation algorithms is attested by a
comprehensive set of comparisons against representative state-
of-the-art methods. Indeed, qualitative and quantitative results
obtained from well-known image benchmarks show that our
methodologies outperform others. As additional contribution, we
have also proposed two new algorithms for image inpainting and
photo colorization, both of which rely on the accuracy of our
segmentation apparatus.

Keywords—Image segmentation, graph laplacian, spectral
graph theory, inpainting, colorization, computer vision applications

I. INTRODUCTION

Image segmentation is the key task for an enormous
quantity of computer vision problems. A typical procedure
in image segmentation is to interpret an image as a graph,
which enables the use of powerful mathematical tools such
as Laplace operators and spectral graph theory. Moreover, the
flexibility introduced by a graph representation as to pixel con-
nectivity and edge weighting greatly increases the capability
of segmentation algorithms to distinguish patterns, structures,
and shapes. However, outperforming human skills in terms
of recognition is a difficult task. Therefore, semi-supervised
image segmentation methods have become a trend by combin-
ing the human ability for object/background detection with the
solid mathematical foundation of graph theory [1].

In this scenario, the use of interact mechanisms to properly
settle Laplace operators on image graph representations have

proven to be an effective alternative [2], [3]. Those user-
assisted mechanisms typically define the Laplace operators in
a similarity/affinity graph which encodes image information
such as colors, textures and gradients. Moreover, it involves a
cost function defined on the graph [4], [5], [6], [3], or solving
a spectral-cut problem [7], [8], [9], [10]. However, as pointed
out in [11], [12], [13], existing partitioning techniques are
circumstantially prone to fail in many pragmatic situations.
For instance, common drawbacks not tackled by state-of-the-
art algorithms are:

1) The resulting segmentation generally exhibits low
adherence on the contours of the image regions,
failing to capture fine details or, in many cases,
producing a low quality segmentation output.

2) Make use of sophisticated optimization tools to be
effective, impacting negatively on the computational
cost, implementation and portability of the code.

3) Demand extra computational effort to the user, spe-
cially for processing high resolution images, such
those obtained nowadays by mobile devices.

4) They are highly sensitive to the adjustment of the
edge weights in the graph.

A. Contributions
In this thesis we proposed two novel user-assisted image

segmentation techniques that address the issues discussed
above. The proposed algorithms rely on Laplace operators,
spectral graph theory, and optimization tools towards reaching
highly fitting on object boundaries which demand a reduced
amount of user involvement while still being mathematically
easy to solve and computationally efficient.

While most of our research has been focused on the
particular problem of image segmentation, we develop as
side results new methodologies for the problem of image
inpainting [14], [15] and photo colorization [16], [17], both of
which derived from the proposed segmentation methodologies.
Figure 1 presents some illustrative examples while the list
below provides the main publications originated during the
development of this thesis:
Contributions in Computer Vision: [10], [18], [17], [19],
[2], [15], [3], [20], [21].
Contributions in Graphics and Visualization: [22], [23],
[24], [25].



Figure 1: Some results obtained during the PhD research period.
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Fig. 1. A few results obtained during the PhD research.

B. Awards
The following papers have been awarded as “ best papers”

or received “ honorable mention” in the renowned SIBGRAPI
and ICCP conferences. According to Google Scholar, SIB-
GRAPI (Conference on Graphics, Patterns and Images) is
the most relevant Latin American conference in the fi elds
of Graphics, Visualization and Computer Vision. ICCP (IEEE
International Conference on Computational Photography) is a
prominent conference in the fi eld of Digital Photography.

• Best paper award for the paper “ Spectral Segmentation
using Cartoon-Texture Decomposition and Inner Product-
based Metric” , 24th SIBGRAPI, Maceio, Brazil, 2011.

• Best paper award for the paper “ Mixed Integer Opti-
mization for Layout Arrangement” , 26th SIBGRAPI, IEEE
Computer Society, Arequipa, Peru, 20131.

• Honorable Mention for the poster presentation “ Image
Colorization based on Multidimensional Projection” , 5th
IEEE ICCP, Harvard, Cambridge, United States, 2014.

C. Scientific Dissemination to the General Public
The research conducted during the thesis had a good impact

in terms of diffusion to the general public (see Figure 2 for an

1See the video of our tool at https://www.youtube.com/watch?v=zGgIYX7oSqI

Fig. 2. Dissemination of the technologies originated to the wider public.

illustration). In fact, part of our research has been advertised
on TV news channels, news papers, and on the internet, as
listed below (in portuguese):

1) News published on www.usp.br (2013): “ Pesquisadores
do ICMC recebem prêmio internacional em computação
gráfi ca” (www.icmc.usp.br/e/53ddb).

2) Report published on www.usp.br (2014): “ ICMC desen-
volve ferramenta inovadora para segmentação de imagens”
(www.icmc.usp.br/e/f37b3).

3) Report published on DCI (Newspaper) (2014):
“ Pesquisadores desenvolvem nova ferramenta para
imagem” (www.icmc.usp.br/e/0ebf1).

4) TV report broadcasted on Rede Globo (2014): “ Programa
criado pela USP São Carlos remove pessoas de foto de
forma fácil” (www.icmc.usp.br/e/49c86).

5) TV report broadcasted on TV Educativa de São Carlos
(2014): “ USP cria ferramenta que facilita a vida de quem
trabalha com imagens” (www.icmc.usp.br/e/9daca).

A summary of the main results obtained during the devel-
opment of this thesis is presented in the following sections.

II. SPECTRAL IMAGE SEGMENTATION

Spectral graph theory [1] has been the basic tool for the
so-called spectral cut methodology [7], [8], [26], [27], which
exploits the eigenstructure of an image affi nity graph so as to
perform clustering. In fact, spectral graph theory enables great
fl exibility in the segmentation process, as different choices can
be made towards defi ning the similarity graph connectivity as
well as the assignment of weights to the edges of the graph.
Such a fl exibility has leveraged a multitude of techniques,
making spectral cuts an attractive image segmentation tool.

Among the vast amount of techniques inspired in spectral
cuts, three approaches have gain a lot of attention in recent
years, being widely used as source of segmentations in many
practical applications:

1) Spectral and Normalized Cuts-based methods [7],
[28], [29], [30], [31], [8], [9], [32];

2) Multiscale Segmentation-based methods [33], [34],
[35], [36], [37];

3) Random Walker-based methods [38], [5], [39], [40].

Despite their effectiveness and powerfulness, methods in-
spired on spectral cuts present some weaknesses that must
be observed when performing segmentation. For example, the
accuracy in detecting the boundaries between image regions



Fig. 3. Pipeline of the proposed image segmentation framework.

is highly dependent on the weights assigned to the edges of
the graph. Although automatic schemes have been proposed
to accurately compute those weights [7], [34], [41], [35], [42],
it is well-known that user intervention is essential in many
cases to correctly defi ne object boundaries [39]. Therefore,
incorporating user knowledge into the segmentation process is
of paramount importance since the identifi cation of boundary
information is subject to human judgment in many practical
situations. Another important issue in the context of spectral
cuts is the computational cost, as computing the eigenstructure
of a graph is a very time consuming task, hampering the direct
use of spectral segmentation in high resolution images [43].

A. Spectral Segmentation via Cartoon-Texture Decomposition
and Inner Product-based Metric

In this section we introduce a new methodology for image
segmentation that relies on spectral cuts but addresses the
issues raised above. We show that the proposed approach out-
performs classical spectral segmentation techniques in aspects
such as accuracy and robustness on the well-known image
dataset from UC-Berkley [44]. Figure 4 shows an example
of the proposed framework. We can summarize the novelties
introduced by our methodology as:

1) An image segmentation technique that combines
cartoon-texture decomposition and spectral cuts [2];

2) A novel method to compute and assign weights to
the edges of the similarity graph using the cartoon
component extracted from the image;

3) A new strategy to modify the weights of the graph
according to user interaction, taking into account the
texture component of the image.

B. Pipeline Overview

The proposed approach, fi rst reported in [10], [2], com-
prises fi ve main steps, as illustrated in Figure 3. The fi rst step,
Cartoon-Texture Decomposition, separates the target image I
into two images, C and T , where C and T hold the cartoon
and texture information contained in I. In the second step,
an Image Coarsening is applied to C and T so as to build
smaller affi nity graphs in the third step of the pipeline, namely
Affinity Graph Construction. Besides speeding up the spectral
decomposition, the reduced number of edges also lessen the
computational burden during the weight assignment stage,
which allow us to handle large images. Weights are derived
from an inner product-based metric defi ned on the coarse
cartoon image. The spectral decomposition is carried out in

Fig. 4. First row: from the left to right, the ground truth image and the result
obtained with our method without user intervention. Second row: illustrates
the user interaction (green scribes) to improve the segmentation.

the Spectral Partition step, being the result mapped back
to the original image through a coarse-to-fi ne interpolation
procedure. The user can change the partition by stroking the
resulting segmentation. This step is performed by combining
the coarse texture component with a recent technique of
harmonic analysis [45], [46] in order to incorporate the high-
level oscillatory information into the spectral cut process.
Details about each step of the pipeline are provided below.

1) Cartoon-Texture Image Decomposition: CTD splits the
input image I into two disjoint images, C and T . The cartoon
component C holds the geometric structures, isotopes and
smooth-pieces of I while the texture component contains
textures, oscillating patterns, fi ne details and noise. This
decomposition schemes satisfi es the important relationship
I = C + T (see [47], [18] and the underlying mathematical
theory proposed in [48]). Similar to [47], where a functional
minimization problem has been formulated and solved through

(a) Input Image (b) Cartoon (c) Texture

Fig. 5. Image decomposition into a cartoon and texture component.



a system of partial differential equations, both cartoon C and
texture T components are computed by solving the following
system of equations:




C = I − ∂ x g 1 − ∂ y g 2 +
1

2λ
d i v

( ∇ C
|∇ C|

)

µ
g 1√
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= 2 λ

[
∂
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]
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µ
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= 2 λ

[
∂

∂ y
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xy g 1 + ∂ 2
yy g 2

]

(1)
with initial conditions for C, g 1, and g 2 given by





∇ C
|∇ C| · (n x, n y) = 0

(I − C − ∂ x g 1 − ∂ y g 2) · n x = 0
(I − C − ∂ x g 1 − ∂ y g 2) · n y = 0

. (2)

Mathematically, the cartoon component C is a bounded vari-
ation function, −→g = ( g 1, g 2) ∈ L 2(R2) where the texture
component T = d i v (−→g ), and the constants λ , µ > 0 are tuning
parameters. Equations (1) are usually discretized by a semi-
implicit fi nite difference schemes and solved using an iterative
algorithm based on fi xed point iteration (for more details about
numerical aspects, see [47], [49]). Figure 5 shows the result
of the CTD scheme applied to a digital image.

In our methodology, both C and T are used to compute the
weights assigned to the edges of the affi nity graph. Since C is
a texture-free denoised image, edge and shape detectors work
well when applied to C as pointed out in [47]. This fact is
exploited to defi ne the weights, as we detail later. Information
contained in T is handled only at the end of pipeline, during
user interaction stage.

2) Image Coarsening: In order to reduce the size of the
affi nity graph towards alleviating the computational burden
during the spectral decomposition, we perform a fi ne-to-coarse
transformation on C (resp. T ), resulting in a coarse scale C̃
(resp. T̃ ) of C (resp. T ). Such a transformation is accomplished
using the bicubic interpolation method described in [50], which
minimizes the blurring effect while still preserving gradients
in the coarse image (see Figure 6 for an illustration). Other
downsampling techniques such as [51] can be alternatively
used to convey essential image information among scales.
Our experiments showed that coarsening the image to one-
fourth of its original resolution is a good trade-off between
computational time and accuracy, speeding up the processing
up to 6 times, as outlined in the comparison section.

3) Building the Affinity Graph: The affi nity graph G is
built by associating each pixel from C̃ to a node of the graph,
connecting the nodes according to the distance r between
corresponding pixels, in mathematical words,

‖ P i − P j ‖ ∞ < r . (3)

(a) Cartoon image coarsening (b) Texture image coarsening

Fig. 6. Fine-to-coarse step illustration obtained from [50].
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Fig. 7. Geometric interpretation of the inner product-based metric. Maximum
weights occur when the gradient and the direction defi ned from the graph edge
point to the same direction (a). Moderate weight is highlighted in (b) and the
third case, where opposite directions (c) produce minimum weights (zero).

The weight assigned to each edge of G is derived from the
proposed inner product-based metric. Our metric considers the
variation of the image in the directions defi ned by the edges
of the graph. More specifi cally, the weight w ij associated to
the edge e ij is defi ned as:

w ij =
1

1 + η h 2
ij

, h ij = m a x

{
∂ C̃(P i)

∂
−→
d ij

,
∂ C̃(P j)

∂
−→
d ji

, 0

}
, (4)

∂ C̃(x )
∂
−→
d ij

= 〈∇ C̃(x ),−→d ij〉, with
−→
d ij =

−−→
P i P j

|−−→P i P j |
. (5)

The left most term in Equation (5) is the directional derivative
of C̃ in the direction

−→
d ij , which is defi ned from the graph G

and η > 0 is a tuning constant. Therefore, image properties
as well as the adjacency structure of the affi nity graph is
taken into account when assigning weights to the edges of G .
Furthermore, our formulation accounts for the intensity and
geometric information to defi ne the weights through the inner-
product in the edge direction. Figure 7 provides a geometric
interpretation of the proposed metric.

The effective weights w ij are chosen from Eq. (4) rather
then using the exponential measure usually employed by other
authors [7], [30], [36]. The scheme proposed in Eq. (4) does
not push values to zero as fast as the exponential function,
which allows for considering the infl uence of a larger number
of edges when carrying out the spectral decomposition. Eq. (4)
is indeed derived from the Malik-Perona diffusivity term [52],
[53], which was originally used for establishing the notion of
anisotropy in partial differential equations. Moreover, the inner
product-based metric (4) holds that w ij = w ji, which ensures
symmetry for the graph Laplacian matrix L. This fact is of
paramount importance to guarantee that the eigenstructure of
L is made up of only real numbers.

4) Spectral Cutting and Coarse-to-Fine: Given the affi nity
graph G built from C̃ and the number of partitions initially
defi ned by the user, we carry out the spectral decomposition
using the same methodology proposed in [7]. More specif-
ically, we fi rst decompose the graph Laplacian matrix as
L = D−W, where D and W contain the diagonal and off-
diagonal elements of L. Then, the Fiedler vector f is obtained
by solving the generalized eigenvalue problem

(D−W)x = λ Dx, (6)

getting f as the eigenvector associated to the smallest non-
zero eigenvalue. The Fiedler vector splits C̃ into two subsets,



________
____________ f =Solution of the

 Eigenproblem

____________________Fiedler vectorAffinity matrix

Fig. 8. Spectral cut pipeline to partition the image from the zero-set of the
Fiedler vector.

Fig. 9. Hierarchical segmentation by recursively computing the spectral
decomposition for multiple parts of the image.

one containing the pixels corresponding to nodes of the graph
where the entries of f are positive and other containing the
pixels with negative values of f . Therefore, the zero-set of f is
a curve that separates the regions with different signs. Figure 8
portrays the spectral cut procedure. The partitioning created in
C̃ is brought back to C using bicubic interpolation from f .

Multiple partitions can also be reach by recursively com-
puting the spectral decomposition for each part of the image
before the interpolation process, as depicted in Figure 9. In
fact, the recursive process may be driven by the user, who can
specify the highest level of recursion, moreover, the user can
brush any pieces of the image during each one of recursion
steps in order to better set weights and thus improve the
segmentation quality (see the next section for details).

Figure 10 shows the result of applying our methodology
to segment a fi ngerprint image. For the sake of comparison,
we show in Fig. 10(a) the result of computing our framework
directly from the original image I, that is, skipping the CTD,
while Fig.10(b) depicts the result using CTD and the classical
weighting metric [7] instead of Eq.(4) to defi ne the graph
weights. Notice, from Fig.10(c), how better the segmentation
is when Eq.(4) and CTD are combined.

5) Interactive Weight Manipulation: Weights can be inter-
actively tuned so as to force the spectral cut to accurately fi t
boundaries between textured regions of the image. Our tuning
scheme relies on the texture component T obtained from the
cartoon-texture decomposition. The component T is processed
by an harmonic analysis tool called Wave Atoms [45], [46].
Wave atoms-based techniques bear high directional anisotropy

(a) Without CTD (b) Without our metric (c) Complete pipeline

Fig. 10. Automatic result with the proposed framework.

(a) Initial segmentation (b) Brush made by user (c) Final result

Fig. 11. Improving segmentation of a noise-textured image.

and sensitivity to noise, which makes them suited to identi-
fying oscillatory patterns in high-frequency domains. In our
approach, we use this tool to assign a scalar S (Ti) ∈ [ 0, 1)
to each pixel Ti of T , where values close to “ one” means the
pixel belongs to the “ wave” of a texture pattern, similar to that
used in [54] to produce a texture mapping. Therefore, pixels
nearby the boundary between two textured regions tend to be
identifi ed as not belonging to a texture wave, thus assuming
values close to “ zero” .

Starting from this premise, the weights of edges incident
to pixels brushed by the user are modifi ed as follows:

w ij = ρ

(
m i n

eij∈E,wij �=0
w ij

)(
1− m a x {S (T̃i), S (T̃j)}

)
, (7)

where the constant ρ ∈ (0, 1) is the smallest non-zero weight
of the edges in G obtained during the automatic spectral cutting
performed on C̃, and T̃ is the coarse version of T . The constant
ρ enforces a more drastic change of weights in the region
stroked by the user since it holds the new weights that will
have the lowest possible non-zero value within the target graph.

Figure 11 shows the result of segmenting a noisy image
using our method setting 10 partitions. Notice from Fig. 11(a)
that most parts of the image is accurately segmented, attesting
the accuracy of the proposed method for the case where
the image contains texture and moderate gaussian noise. The
spectral cut deviates from the correct boundary in just a few
small regions which are easily fi xed through user interaction,
as depicted in Fig.11(b) and Fig. 11(c). This post-segmentation
was only feasible because the texture mapping used to accom-
plish this task is sensitive to noise. Figure 12 shows that is not
necessary to perform a large number of user interventions to
achieve the desired segmentation. The simple greenish stroke
depicted on the texture region between the two owls were
enough to separate the birds, as depicted in Fig.12(c).

(a) Original image (b) Small stroke (c) Final result

Fig. 12. A simple stroke (greenish region between the two owls) is suffi cient
to improve the segmentation.



C. Results, Comparisons and Evaluation

Now we present the results obtained with the proposed
framework and a comparative study involving four other state-
of-the-art methods. We split this section into three classes of
experiments:

1) Comparison with Automatic Methods.
2) Evaluation using Ground-Truth Images.
3) Comparison with Interactive Methods.

The following parameters were used in all experiments pre-
sented in this section: λ = 0.05 and µ = 0.1 in the cartoon-
texture decomposition, the default parameters suggested in
[50] for the bicubic interpolation and a hard threshold at
3σ (noise-to-signal ratio of the image) combined with cycle
spinning [45] for the wave atom transform. We set r = 1
and η = 5 in Equations (3)-(4), respectively. Finally, in order
to check the segmentation quality of the proposed approach,
we provide comparisons against two automatic and two user-
assisted eigenspectrum-based techniques:

• k-way Normalized Cuts method (NCut)2 [7], [32];

• Multiscale Normalized Cuts method (MS-NCut)3 [34]
(with radius 2.3);

• Random Walker-based Segmentation with pure Eigen-
vector Precomputation (RWS-EP) [39];

• Random Walker based on Eigenvector Precomputation
and Prior scheme (MSFP)4 (with 80 precomputed
eigenvectors) [40];

1) Comparison with Automatic Methods: The fi rst experi-
ment shown in Figure 13 presents a comparative analysis of
our technique against the non-interactive NCut and MS-NCut
approaches. We can see that both classical NCut (Fig. 13(b))
and MS-NCut (Fig. 13(c)) badly segment parts of the image.
Our approach results in a better partitioning (Fig. 13(d)),
although some regions are also segmented in an incorrect

2available at http://note.sonots.com/SciSoftware/NcutImageSegmentation.html
3available at http://www.cis.upenn.edu/∼jshi/software/
4available at http://fastrw.cs.sfu.ca

(a) Original image (b) NCut result (c) MS-NCut result

(d) Our initial result (e) With brush (green) (f) Final segmentation

Fig. 13. The influ ence of the user intervention in comparison with static
approaches.

(a) NCut partition (b) MS-NCut partition (c) Our result

Fig. 14. The result of applying NCut, MS-NCut, and the proposed approach
(in automatic mode) in a fi ngerprint image.

(a) NCut result (b) MS-NCut result (c) Our result

Fig. 15. Our approach (in automatic mode) produces smoother segmentation
curves when compared to NCut and MS-NCut.

way. After user intervention, shown in Fig. 13(e), the result
improves considerably (Fig. 13(f)).

The result of applying the three above-mentioned methods
in a fi ngerprint image for two partitions is shown in Figure 14.
Notice that the NCut (Fig. 14(a)) does not segment the
fi ngerprint correctly while the MS-NCut and our approach do
a good job. It is easy to see from Fig. 14(b) that the MS-
NCut tends to produce a jagged segmentation curve while our
method results in a smoother curve, as shown in Fig. 14(c). It
becomes clear from Figure 15 that the smoothness of the result
produced by our approach also help increase robustness. While
NCut and MS-NCut tend to generate a segmentation curve
with many artifacts and some cognition errors, our approach
produces a much pleasant result.

2) Evaluation using Ground-Truth Images: We evaluate
the performance of the proposed methodology by means of
quantitative and visual analysis against the NCut and MS-
NCut algorithms. To accomplish the numerical evaluation, we
make use of Recall, Precision and F-Score measures [55] on
the well-known Berkeley Segmentation Dataset (BSDS) [56],
which provides 300 natural images with their human-drawn
ground-truth segmentations organized by a large number of
different human subjects. The metrics are defi ned as follows:
Recall: is computed by the following expression

Recall =
Matched(S target, S source)

|S target|
, (8)

where S source represents the ground truth segmentation (ob-
tained from the average of the provided BSDS segmentations),
S target the partitioning to be evaluated and | · | indicates the
total number of boundary pixels in the current segmentation.
Recall (8) can be understood as the proportion of boundary
pixels in S target for which it is possible to fi nd a matching
boundary pixel in S source.



Precision: holds the opposite situation, that is,

Precision =
Matched(S source, S target)

|S source|
. (9)

F-score: is a standard statistical measure that summarizes the
recall and precision measures into a unifi ed metric. It accounts
for the trade-off between sensitivity and positive predictive
values:

F -Score = 2
Precision Recall

Precision + Recall
. (10)

Figure 16 presents the computation of Recall (8), Precision
(9) and the F-Score (10) for the BSDS dataset. One notices
that our framework is better than other methods for most
of the metrics, being fairly stable in all cases. In fact, only
the recall quantity leads to a similar behavior between the
MS-NCut and the proposed method. Figure 17 depicts the
partitioning produced by NCut, MS-NCut, and our approach
when applied to illustrative images randomly extracted from
the BSDS dataset [56]. Notice that the MS-NCut and our
method produced much better results than the classical NCut
(the ground truth is shown in the last column). In contrast to
MS-NCut, our method has two advantages: it produces smooth
boundaries between the segmented regions and it clusters the
image into slightly wider regions, two characteristics also
present in the ground truth images. Moreover, it can be seen
that our approach is more robust to identify objects and
structures contained in the images. For instance, the input
images monk, geisha, and horse were better captured by our
technique.
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Fig. 16. Quantitative comparison for the Recall, Precision and the F-score
segmentation measures. For all images, we compute the average of the recall
and precision quantities for R = 8, 9, 10, 11 and 12 [55].

Fig. 17. From left to right: The input image, the segmentations resulting
from NCut, MS-NCut, our approach and the human-drawn ground-truth.

3) Comparison with Interactive Methods: The results
provided by the proposed methodology considering user
intervention has been compared against two user-assisted
eigenspectrum-based methods, RWS-EP [39] and RWS-
EPP [40], as depicted in Figure 18. In contrast to the Random
Walker-based techniques RWS-EP and RWS-EPP, our method
does not require an initial user setup to produce the fi rst
segmentation result.

(a) Input image (b) 1st interaction (c) 2nd interaction (d) After2 brushes

(e) Input image (f) 2nd interaction (g) 4th interaction (h) After6 brushes

(i) Input image (j) 2nd interaction (k) 6th interaction (l) After10brushes

Fig. 18. Segmentation driven by user produced by our technique (top row),
RWS-EP (middle row) and RWS-EPP (bottom row). Fig. 18(a) is required by
our approach, while the target image and the initial setup with 2000 seeds
(blue and green pieces) must be provided by the user in random walker-based
methods (Figs. 18(e) and 18(i))



TABLE I. COMPARATIVE TIMING TABLE (IN SECONDS) WITH RESPECT
TO EXPERIMENT INVOLVING USER AUTONOMY (FIG. 18, IMAGE

DIMENSION: 256× 256). THE TIMING +4 MEANS THE TIME TAKEN FOR
THE INCLUSION OF SEEDS.

Processing stage RWS-EP RWS-EPP Our method

To produce the 23 (+4) 21 (+4) 51st segmentation
Average time 0.5 0.6 0.4per interaction
To produce the 29.4 32.3 5.83desired result

Notice that differently from RWS-EP and RWS-EPP, which
require much more user interference to reach a pleasant result
(Figs. 18(h) and 18(l)), our approach needed only two brushes
to yield the desired result (Fig. 18(d)). Besides, our technique
is considerably faster when compared against RWS-EP and
RWS-EPP (see Table I).

III. SEEDED IMAGE SEGMENTATION

A growing number of semi-supervised image segmentation
methods have been proposed in the last few years, motivated
mainly by the human capability of recognizing and detecting
patterns. In fact, seeded image segmentation figures among
the most relevant image segmentation methodologies, where
traditionally algorithms make use of user’s prior knowledge
as input data in order to operate suitably. Seed-based image
segmentation methods typically rely on a given set of labeled
pixels (“seeds”) and on affinity weighted graphs whose nodes
correspond to image pixels and edges reflect the neighborhood
structure of the pixels. Edge weights encode image attributes
such as texture, color or gradients and they are used to guide
the propagation of the seeded labels throughout the image.

Many mathematical formulations and algorithms have been
recently proposed to perform segmentation by seed propaga-
tion [57], [5], [4], [58], [59], [6], [60], [61], [62], [63], most
of them making use of energy functional minimization on
graphs. In terms of energy minimization formulation, [64],
[65] showed that most seed-based image segmentation methods
can be understood as variations of a small group of basic
techniques which differ from each other in terms of their math-
ematical formulation, pairwise pixel distance and weight com-
putation. In fact, those algorithms were reinterpreted as special
cases of the following generalized energy functional [65]:

EPWS(x) =
∑

i∈B
wpBi|xi − xB |q +

∑

i∈F
wpFi|xi − xF |q+

1

2

∑

i∈V


 ∑

j∈N(i)

wpij |xi − xj |q

 , (11)

where xi is the sought solution, that is, the saliency map
w.r.t. target image, wij is the weight assigned to the edge
(i, j), xB and xF represent the values of seeded pixels in
the background and foreground, wBi and wFi are their pe-
nalizations, respectively, and the constant p and q are positive
parameters. Functional (11) assumes the form of specific image
segmentation algorithms when p and q vary as shown in
Table II.

TABLE II. VARIATION OF THE PARAMETERS p AND q IN
EQUATION (11) VERSUS CLASSICAL SEGMENTATION ALGORITHMS [65].

q\p 0 finite ∞
1 Seed collapse Graph Cuts P. Watershed (q = 1)
2 l2 norm R. Walker P. Watershed (q = 2)
∞ l1 norm l1 norm S. Path Forest

Most of the work from the literature particularly focus on
the four major groups mentioned in Table II, more specifically:

1) Graph Cuts-based methods [66], [57], [4], [58], [67];
2) Random Walker-based methods [5], [68], [39], [40];
3) Watersheds-based methods [69], [6], [64], [70], [65];
4) Shortest Path Forest/Geodesic-based methods [71],

[72], [73], [74], [75], [76],

which minimize the same energy functional whose formulation
takes into account only first-order pairwise pixels, differing
only in terms of exponent values. Furthermore, most existing
methods from this set rely on non-quadratic energies, thus
demanding the use of sophisticated and computationally cost
optimization tools. Ensuring accuracy and smooth solution is
also an issue for existing techniques.

A. Laplacian Coordinates for Image Segmentation

Aiming at dealing with the issues raised above, in this
section we present a new technique for seeded image segmen-
tation, first reported in [3], which relies on the minimization
of a novel quadratic energy functional defined on an affin-
ity graph. The new approach, called Laplacian Coordinates,
allows for user intervention while leading to smoother and
accurate solutions.

The notion of Laplacian Coordinates has initially appeared
in [77], [78] to address the problem of surface editing in the
field of Geometry Processing. In contrast to most existing
algorithms, in particular the four ones mentioned earlier that
minimize the “distance” between pairwise pixels, the proposed
approach minimizes the average of distances while controlling
anisotropic propagation of labels during the segmentation
process. Therefore, pixels sharing similar attributes are kept
closer to each other while jumps are naturally imposed on the
boundary between image regions, thus ensuring better fitting
on image boundaries as well as a pretty good neighborhood
preservation (on average). Moreover, the proposed formulation
is guaranteed to have a unique solution, an important trait not
always present in seed-based image segmentation algorithms.
Other fundamental characteristic of Laplacian Coordinates
is that the minimizer of the cost function is given by the
solution of a constrained system of linear equations, making
the algorithm quite simple to be used and coded.

The Laplacian Coordinates pipeline is very simple and
comprises four main steps: Definition of Seeds, Affinity Graph
Building, Energy Functional Construction and Solution, and
Assignment of Labels. Figure 19 illustrates the use of the
Laplacian Coordinates approach. In summary, the main con-
tributions of the proposed technique are:

1) A novel and easy-to-implement formulation for seed-
based image segmentation, which we call Laplacian
Coordinates [3].



Fig. 19. Segmentations produced by the Laplacian Coordinates approach,
where red and green scribes indicate the seedings.

2) Laplacian Coordinates bears several important prop-
erties such as boundary fi tting, anisotropy and unique
solution for the minimizer.

3) The segmentation simply consists of solving a con-
strained sparse linear system of equations.

4) A comprehensive set of quantitative and qualita-
tive comparisons against state-of-art algorithms that
shows the effectiveness of Laplacian Coordinates.

B. Computing the Laplacian Coordinates Energy on Graphs

Let I be a color or grayscale image. For a color image, we
denote the RGB vector by I i = (R i, G i, B i), which indicates
the luminance of red, green and blue channels at pixel P i ∈ I .
For a grayscale image, I i is the pixel intensity. As a basic tool
to proceed with the segmentation task, we construct a weighted
graph G = (V , E , W E), where V is the set of nodes i ∈ V
corresponding to the pixel P i ∈ I , the edge set E corresponds
to pairs of pixels locally connected in an 8-neighborhood, and
w ij ∈ W E is the weight assigned to edge (i , j ) of the graph.
The set N (i ) = {j : ( i , j ) ∈ E } represents the indices of the
pixels P j that share an edge with pixel P i and the quantity

d i =
∑

j∈N(i)

w ij (12)

measures the weighted valency associated to pixel P i.

1) Graph Weight Setup: There are many different ways
to defi ne the set of weights W E , many of them relying
on pixel intensity, gradient, scalability, saliency and contour
information [34], [35], [79], [2], [42], [80]. Aiming at keeping
our approach as simple as possible, we only consider pixel
intensities to defi ne the weights. More precisely, the weight
w ij = w (P i, P j) assigned to each pixel pair (P i, P j) is
computed as follows:

w ij = e x p

(
− β || I i − I j ‖ 2∞

σ

)
, σ = m a x

(i,j)∈E
||I i − I j ||∞,

(13)
where β is a tuning constant. Notice that the weights are
positive and symmetric in the sense that w ij = w ji. In
terms of usage, a small constant ε = 10−6 is added into
Equation (13) to avoid null weights, as suggested by [61].
Sophisticated weighting functions can also be employed to
reach more refi ned segmentations such as the inner-product
similarity metric (4).

2) Laplacian Coordinates Energy Functional: Given the
affi nity matrix W computed as in Equation (13), the set of
background B and foreground F seeded pixels and their cor-
responding labels x B and x F , the following energy functional
E (x) is minimized with respect to vector x:

∑

i∈B

‖ x i − x B ‖ 22
︸ ︷ ︷ ︸

fi delity term

+
∑

i∈F

‖ x i − x F ‖ 22
︸ ︷ ︷ ︸

fi delity term

+
∑

i∈V

∥∥∥∥∥d i x i −
∑

j∈N(i)

w ij x j

∥∥∥∥∥

2

2︸ ︷ ︷ ︸
LC term

(14)
where x = ( x 1, x 2, ..., x n)

t is the sought solution, that is, the
scalar values assigned to the pixels (P 1, P 2, ..., P n) so as to
minimize the functional E (x), n is the number of pixels and
w ij is computed as in Eq. (13). Without loss of generality,
assume that x B > x F . Once the Energy (14) is minimized,
the segmentation is accomplished by assigning background and
foreground labels y i ∈ {x B , x F }, i ∈ V , as follows:

y i =

{
x B , if x i ≥

x B + x F

2
x F , otherwise

. (15)

Laplacian Coordinates energy functional (14) is made up of
two main components, one accounting for the constraints
imposed by the seeds in B and F , called fidelity term,
and a second component controlling the label spread in the
neighborhood of each pixel, called LC energy term. In matricial
notation, LC energy term can be rewritten as follows:

∑

i∈V

∥∥∥∥∥ d i x i −
∑

j∈N(i)

w ij x j

∥∥∥∥∥

2

2

=
∑

i∈V


 ∑

j∈N(i)

w ij(x i − x j)



2

=


 ∑

j∈N(1)

w 1j(x 1 − x j), . . . ,
∑

j∈N(n)

w nj(x n − x j)




︸ ︷ ︷ ︸
vt

·v=(Lx)t(Lx)

Thus,

∑

i∈V

∥∥∥∥∥ d i x i −
∑

j∈N(i)

w ij x j

∥∥∥∥∥

2

2

= (Lx)t(Lx) = ‖ Lx ‖ 22 , (16)

where L = D −W is the graph Laplacian matrix, D is the
diagonal matrix where D ii = d i (see Equation (12)) and W
denotes the weighted adjacency matrix of the graph, that is,

W ij =

{
w ij , if (i , j ) ∈ E
0, otherwise . (17)

Notice that the i-th component of Lx corresponds to the
differential/average operator:

δ i = x i −
1

d i

∑

j∈N(i)

w ij x j , that is, (Lx)i = d i δ i . (18)

In less mathematical terms, quantity δ i measures how much
each node deviates from the weighted average of its neighbors.

3) Minimizing the Energy Functional: Energy (14) can be
modeled in a more general matricial form, that is,

E (x) =
∑

i∈B

(x i − x B)
2 +

∑

i∈F

(x i − x F )
2 + ‖ Lx ‖ 22

=
∑

i∈S

x 2
i − 2

(∑

i∈B

x i x B +
∑

i∈F

x i x F

)
+ c + (Lx)t(Lx)

= xtL2x+ xtISx− 2xtb+ c



E (x) = xt(IS + L2)x− 2xtb+ c , (19)

where IS is a diagonal matrix such that I S(i , i ) = 1, i ∈
S = B ∪ F , and zero, otherwise, b is the vector where
b (i ) = x B , i ∈ B ; b (i ) = x F , i ∈ F , and zero otherwise,
and c is a constant. Quadratic form (19) has a unique min-
imizer since (IS + L2) is a symmetric and positive defi nite
matrix. Moreover, its minimizer vector x is the solution of the
following linear system [81]:

(IS + L2)x = b. (20)

Therefore, minimizing E (x) is equivalent to solving the linear
system (20), which, in turn, holds quite attractive properties
such as symmetry, positive defi niteness and sparsity. After
solving Eq. (20), the segmentation is then performed by
assigning a label to each image pixel according to Eq. (15).

4) Laplacian Coordinates Properties: Besides being com-
putationally effi cient, easy-to-implement and ensuring unique
solution, the proposed method has additional properties that
render it attractive to segment images, as discussed below.
Boundary and Constraint Fitting. The main characteris-
tic that differs Laplacian Coordinates from other seed-based
approaches is its capability to better propagate the seeds (con-
straint information). Figure 20 illustrates this by comparing
Laplacian Coordinates against the Random Walker approach
in one-dimensional case. First row of Figure 20 shows a 1D
graph with 500 nodes ordered from left to right. Second row in
Figure 20 shows two different distributions of edge weights: on
the left, unitary weights are assigned to edges, except for edges
in the middle of the graph, where weights have a distribution
that decreases and gets close to zero increasing back to 1. On
the right, weights are distributed similarly, but now with two
picks isometrically arranged. Constraints (seeds) are imposed
in the yellow and purple nodes. As one can easily see on
the third row of Figure 20, Laplacian Coordinates spread the
constraint information in a smoother way, taking longer to
diffuse the constraint information when compared to Random
Walker approach. For the sake of illustration, last row in Figure
20 presents the result of applying Laplacian Coordinates and
Random Walker when weights are set equal 1.
Solution in Terms of Extended Neighborhood. An inter-
esting interpretation of the solution of Laplacian Coordinates
is that each pixel x i is written not in terms of the fi rst-order
neighbors, but considering distant neighborhoods, instead. In
mathematical terms, at an unconstrained pixel P i, we have:

(Lx)i =
1

d i

∑

j∈N(i)

w ij(Lx)j (21)

where (Lx)j is computed as in Equation (18). The solution x i

is then computed taking into account an extended neighbor-
hood, mathematically expressed by the equation:

x i =
1

d i

∑

j∈N(i)

w ij

(
x j +

δ j
d i

)

=
1

d i

∑

j∈N(i)

w ij x j +
1

d 2i

∑

j∈N(i)

w ij


 ∑

p∈N(j)

w jp(x j − x p)


 .

Therefore, information coming from the constraints takes
longer to be diffused by the Laplacian Coordinates approach.
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Fig. 20. Comparison between the solution obtained from Laplacian Coor-
dinates and the classical Random Walker algorithm under the same initial
conditions. Line graphs are shown in the top row with seeded vertices in
yellow and purple while the corresponding edge weights are shown in the
second row. The solution with and without the mentioned weights are given
in the third and fourth rows.

Seeding Flexibility and Adaptability. Figure 21 shows the
robustness of Laplacian Coordinates in producing different
segmentations by just selecting distinct targets in the image.
Notice from the two initial confi gurations (left and middle
columns) of Fig. 21 that both objects (the boys) are accurately
segmented, attesting the accuracy of the proposed approach.
In fact, an even more general solution can be obtained by si-
multaneously seeding the two targets of the image, as depicted
in the last column of Fig. 21.

Multiple-Region Segmentation. Laplacian Coordinates can
also easily be extended to segment an image into several parts.
This extension is carried out by simply solving (N −1) system
of linear equations similar to Equation (20):

(IS + L2)x(j) = b(j), (22)

but setting I S(i , i ) = 1 for all seeded pixels in the image
and specifying different b (j) for each one of the given labels
K j ∈ K = {K 1, K 2, ..., K N}, 1 ≤ j ≤ (N − 1). Let C

be a positive constant. We set b
(j)
i = C , i ∈ K j , b

(j)
i =

−C , i ∈ (K \ K j), zero, otherwise. Assuming that all x(j) are
bounded by [ −C , C ] , the last scalar map x(N) is then obtained
as follows:

x
(N)
i = C − m a x

1≤j≤(N−1)
{x (j)

i } . (23)



Fig. 21. Selecting different objects from the image by exploiting the seed sen-
sitivity of the Laplacian Coordinates. First row: multiple selections are given
as input to the method and Second row: the corresponding segmentations.

Figure 1:Fig. 22. Extension of the Laplacian Coordinates (14) for multiple segmen-
tation. First row: multiple seeds are sketched as colored strokes, from which
Laplacian Coordinates produced the multiple segmented regions. Middle and
bottom row: sketched seeds, the fi nal segmentation and the six solution vectors
x(j) that give rise to the multiple segmentation.

Finally, for each j : 1 ≤ j ≤ N , the segmentation y (j) (a
binary image) is performed by

y (j) =
⋂

p=1,...,N
p �=j

(x (j) > x (p)) , (24)

where > is computed for all pixels of the image. Figure 22
depicts the result of Laplacian Coordinates to segment multiple
regions. Color strokes mark the objects (strokes with the same
color correspond to the same region), from which Laplacian
Coordinates generates the segmentation in multiple regions.

C. Results, Comparisons and Evaluation

In this section we provide a comprehensive experimental
evaluation of Laplacian Coordinates against competing state-
of-the-art techniques. We evaluate each method using multiple

measures traditionally employed by the image segmentation
community.

In order to perform the experimental analysis, we use one
of the most popular benchmark dataset for seeded-based seg-
mentation: the “ Grabcut” dataset [57]. This dataset contains
50 prototype images, their ground-truth (obtained from manual
human segmentation), and seeded maps marking foreground
and background regions of the images. We make use of
this benchmark dataset to compare the Laplacian Coordinates
approach (LC) [3] against fi ve traditional seed-based segmen-
tation algorithms:

• Graph Cuts algorithm (GC) [57], [4];

• Power Watershed algorithm (PWS) [82], [65];

• Maximum Spanning Forest with Kruskal’s algorithm
(MSFK) [6], [65];

• Maximum Spanning Forest with Prim’s algorithm
(MSFP) [6], [65];

• Random Walker algorithm (RW) [5].

Quantitative evaluations are performed comparing the out-
put quality in terms of object/region detection as well as the
accuracy in preserving ground-truth boundaries.

1) Region Quality Metrics: We employ three distinct region
quality metrics to gauge the quality of Laplacian Coordinates
against others, namely

Rand Index (R I ): measures the closeness between the output
segmentation S and the ground-truth G by counting the
number of pixel pairs that have the same label [83]. More
formally, it computes the sum of the pixel pairs that share a
common label in S and G and those that share distinct labels
in both images, divided by the total number of pixel pairs.

Global Consistency Error (G C E ): computes how much the
segmentation can be interpreted as a refi nement of other,
forcing the local refi nements to be in the same orientation [44].
In fact, GCE does not take into account the scale of images
to proceed with the measurements, ensuring consistency even
when comparing different scales. Lower values are better.

Variation of Information (V o I ): quantifi es the distance be-
tween ground-truth and segmentation in terms of their relative
entropies [84]. More precisely, it quantifi es the amount of
randomness information in changing from one clustering to
another. Moreover, VoI is properly a metric in the sense of the
theory of linear algebra satisfying the positivity, symmetry and
the triangle inequality [85], [86]. Values close to 0 are better.

2) Boundary Quality Metrics: We also consider in our
experiments two popular metrics to measure the quality of the
boundaries detected by the segmentations, that is,

Boundary Displacement Error (B D E ): quantifi es the aver-
age of the displacement error taking into account the amount of
boundary pixels from the segmentation result that correspond
to the closest boundary pixels from the ground-truth [87].

The Harmonic Average Score (F-Score): summarizes the
Recall and Precision baseline metrics [55], [56], which mea-
sure how much the segmentation matches the ground-truth
boundaries (see Section II-C). The matching is established in
terms of the boundary pixel proximity for different values of
radius R , as proposed in [55].
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Max 0.757836976 0.714188336 0.857505352 0.857714548 0.875868833 1
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Mediana - Q1 0.058734199 0.071041365 0.050863055 0.051251385 0.073237688 0.06199283
Q3 - Mediana 0.071339542 0.095345896 0.12096186 0.120757027 0.108925287 0.131904703
Max - Q3 0.602484491 0.484010949 0.62830527 0.628447908 0.658389339 0.759661813
Q1 - Min 0.02276953 0.063790127 0.057174211 0.056872117 0.032619776 0.0450255
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Fig. 23. Comparison of six seed-based segmentation methods regarding to
RI, GCE, VoI and BDE quality metrics. In all cases, the proposed Laplacian
Coordinates framework outperforms all other fi ve evaluated techniques.
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Fig. 24. F-score quality metric. Laplacian Coordinates is considerably better
than other methods when parameter R increases.

Figure 23 summarize the quantitative results of the metrics
RI, GCE, VoI and BDE for the Microsoft “ Grabcut” dataset.
Notice that the Laplacian Coordinates clearly outperforms the
other fi ve methods in all quality metrics, being also fairly stable
to those metrics.

Figure 1:Fig. 25. From left to right: Ground-truth, the tri-map images (seeds and
unknown region) provided from Grabcut dataset, and the segmentation results
from GC, MSFK, MSKP and LC approach.

Figure 2:

2

Fig. 26. From left to right: Ground-truth, tri-map images (seeds and the
unknown region), and segmentations from PWS, RW and LC approach.

Regarding F-score, the LC approach also presents very
good performance, specially when the parameter R increases.
As one can see from Figure 24, the proposed approach shows
a better F-score than other techniques, outperforming all for
R equal or bigger than 7. These quantitative results show
the effectiveness of Laplacian Coordinates as a seeded image
segmentation method.

Figures 25 and 26 present qualitative results comparing
GC, MSFK, MSFP, PWS and RW against Laplacian Coordi-
nates. One can see that, besides accurately capturing bound-
aries, Laplacian Coordinates tends to simultaneously generate
smoother and better fi t boundary curves, a characteristic not
present in any other approach, which are less accurate while
still producing more jagged boundary curves.



IV. IMAGE INPAINTING AND PHOTO COLORIZATION

This section presents the use of the proposed segmentation
approaches in two problems typically studied by the computer
vision and engineering communities: image inpainting and
image colorization. Image inpainting seeks to recover the
natural aspect of an image where data has been partially
damaged or occluded by undesired objects. Photo colorization
is a computer-assisted process by which grayscale images or
black-and-white fi lms are properly colored (see Figure 27 for
an illustrative example).

(a) Input image (target in red) (b) Inpainted image

(c) Input image (with color scribbles) (d) Colored image

Fig. 27. Image inpainting and colorization using the proposed frameworks.

Both inpainting and colorization applications share the
common underlying idea that how accurately the objects to be
fi lled or colorized are segmented. Therefore, build a good seg-
mentation scheme into those applications is essential to ensure
the success of those tasks. In this spirit, we introduce two new
techniques that address the problem of image inpainting and
photo colorization which make use of our segmentation tools
as starting point to reach their fi nal goal. We also compare the
effectiveness of those techniques against representative state-
of-the-art methods for a variety of synthetic and real images.

A. Interactive Image Inpainting using Laplacian Coordinates

Image inpainting is a modern research topic that has
received a great deal of attention in recent years. It focuses on
studying restoration and disocclusion processes for damaged
digital images and artistic edition fi nalities. Methods devoted
to perform inpainting can be arranged in several groups, as
suggested by the surveys [88], [89], [15]. In short words, exist-
ing approaches differ in terms of pixel propagation, sensibility
when synthesizing textures, and fi lling order criterion [88].

Although techniques for performing image inpainting vary
in many fundamental aspects, a common drawback not covered
by most inpainting systems is that they require the user to
manually “ carving” the targets to be edited. Selecting those
targets consists of a meticulous process that demands great
effort from users to precisely separate the targets from the
image background. In fact, there are a few methods that ad-
dress the problem of selecting the regions to be inpainted in an
automatic or semi-supervised way. The techniques proposed by

[90], [91], [92] automatically detect defects easily to identify
visually but diffi cult to be segmented by hand. However, those
algorithms can only handle a limited class of defects, thus con-
straining their application to specifi c problems. A method that
covers a broader number of cases was proposed by [93], which
introduces user knowledge into the pipeline of inpainting. The
authors provide a user interface that allows users to guide
the restoration by drawing straight lines on target regions.
A similar user-steered interface was proposed by [94], which
relies on the nearest neighbor correspondences among parts
of the image. Their algorithm has recently been introduced in
the Adobe Photoshop Engine as an interactive tool to perform
image retouching. Since a great amount of user intervention
is required to drive the whole inpainting process, the time for
generating a pleasant result is considerable, specially when
object to be inpainted is large.

Aiming at overcoming the issues mentioned above while
providing a friendly and intuitive interface to select the regions
to be recovered, we propose a novel framework (fi st reported
in [21]) that generates pleasant results with a reduced number
of user interventions. Moreover, the non-interactive version of
our technique, fi rstly reported in [15], outperforms existing
inpainting methods in several aspects, as we show hereafter.

1) Pipeline Overview: In order to combine the accuracy
and the high-adherence on image contours of the Laplacian
Coordinates approach with the effi ciency of the proposed
inpainting technique, we design a new tool that allows users
to easily brush the objects to be inpainted. As illustrated
in Figure 28, our pipeline comprises four basic steps: User-
steered Selection of the Inpainting Domain, Pixel Filling Order
Assignment, and Patch-based Pixel Replication.

User-steered Selection of the Inpainting Domain. Let f
be the target image, Ω ⊂ R2 the region to be inpainted
and ∂ Ω its boundary. In our approach, entire objects can
be easily segmented so as to avoid the meticulous election
of the boundary pixels employed by tradicional approaches.
The user selects a target region Ω by brushing on the object
of interest and the marked pixels are used as seeds for the
segmentation process. The image background must also be
roughly marked to properly settle optimization constraints
for the Laplacian Coordinates. Managing multiple regions is
also allowed, since Laplacian Coordinates enables multiple
segmentations simultaneously. Moreover, user can recursively
steer the resulting partition towards reaching a higher quality
result. Figure 28 (left) illustrates the above-mentioned scheme.

Filling Order Assignment. Our inpainting procedure starts
by computing a mapping image u (cartoon image) from f
using the anisotropic diffusion equation proposed in [95].
Similar to [54], [18], component u is obtained by numerically
solving the following partial differential equation:

∂ f (t)

∂ t
= g |∇ f (t)|d i v

( ∇ f (t)

|∇ f (t)|

)
− (1− g )( f (t) − f ), (25)

where f (t) is the scaled version of f , g = g (|∇ G σ∗ f (t)|) is an
edge detection function, G σ represents the gaussian function
and σ is a tuning parameter. Figure 29 shows the original
image, its cartoon version and the gradient fi elds computed
from the rectangular samples highlighted in both images. As
one can observe, the fi eld derived from the cartoon image is
better behaved than the one computed directly from f .



user interaction

brushed image target mask inpainted image

inpainting mask selection

input image target image

image inpainting

Fig. 28. Pipeline of our interactive inpainting framework.

(a) Original image (b) Gradient fi eld from the sample in (a)

(c) Carton image (d) Gradient fi eld from the sample in (b)

Fig. 29. Representation of the gradient fi eld for an illustrative image.

The use of the cartoon image u allows us to embed image
isophotes as well as image structures into the mechanism
that computes the fi lling order of the damaged pixels. This
mechanism is computed in terms of a new priority measure:

P(p ) = R(p ) · C(p ), p ∈ ∂ Ω , (26)

where R(p ) and C(p ) represent the Relevance and Biased
Confidence terms:

R(p ) = |∇ (∆ u p) ·
−→
d p|,

−→
d p =

∇ ⊥ u p

|∇ ⊥ u p|
, (27)

C(p ) =




∑
q∈Hm(p)∩(D−Ω)

C (q )
1
k

|H m(p )|




k

, (28)

with |H m(p )| denoting the size of a squared block m × m
centered at pixel p , and k > 0 is the bias parameter. Relevance
term R computes the isophote direction from ∂ Ω . In fact,
Expression (27) is similar to the transport equation proposed in
[96], since it takes into consideration the directional derivative
of a nontextured image for isophote propagation: R(p ) =

(a) Target image (b) Cartoon image u (c) Relevance term R(p)

(d) Isophote completion (e) Conf. term C(p) (f) Inpainted image

Fig. 30. Illustration of the priority fi lling order mechanism (Equation (26)).

∣∣∣∣∣
∂ (∆ u p)

∂
−→
d p

∣∣∣∣∣. Biased confi dence term (28) allows us to balance

the fi lling order mechanism according to k parameter. For an
illustration of R and C, see Figure 30.

Block-based pixel replication. In this stage we are able to
allocate the most suitable patch of pixels from the sampling
region Λ Ω p to the neighborhood of p ∈ ∂ Ω . Given a pixel
p ∈ ∂ Ω , we defi ne the region H L(p ) from Λ Ω p (see Fig.31(a)).
Our algorithm then makes use of a cartoon-based metric to
compare the fi xed patch H n(p ) with all candidate patches
H n(q ) inside Λ Ω p. More precisely, the optimal patch H n(̂q )
is the one which minimizes the distance between H n(p ) and
H n(q ) w.r.t. a given metric. A smaller patch H m(̂q ) is then
selected from H n(̂q ) and its valid pixels H (̂q ) are placed in
corresponding pixels in the neighborhood of p , namely H (p )
(see Fig.31(b)-(c)).

Let p = (f p1 , f p2 , ..., f pl
), q = (f q1 , f q2 , ..., f ql) be the

column vectors in Rl, l < n 2, containing the intensities of
the given pixels on H n(p ) and in corresponding positions on
H n(q ). Aiming at measuring the distance between H n(p ) (tar-
get) and H n(q ) (candidate) blocks, we propose the following
metric:

d (p,q)=
||p− q||∆U√
||p||2∆U + ||q||2∆U

, ||p||∆U :=
√

pT ∆ U p, (29)

with ∆ U being a diagonal matrix defi ned by the Laplacian
of cartoon u : ∆ U ii = ∆ u pi

, p i ∈ H n(p ) ∩ Λ Ω p. Metric



i.e., the region ΛΩpn may be characterized in terms of a function F which depends on the re-
construction in each inpainting step gi in the pixels p1, p2, ..., pn−1. Using this strategy, many
important texture patterns are preserved, since a substantial part of the information comes directly
from the neighborhood of recovered pixels.

(a) (b) (c)

Figure 5: Illustrative sketch of the dynamic sampling and the information synthesis process. (a) ΛΩp is the region
providing the candidate pixel blocks and HL(p) (in green) is the assessment block centered at target pixel p, (b)
comparison between valid content of blocks Hn(p) and Hn(q̂) and (c) result after copying the information of interest.

5. Block-based pixel replication

After choosing target-pixel p using equation (9) and setting the corresponding sampling region
ΛΩp by equation (10), we need to locate, within ΛΩp, the most suitable m×m block of pixels
Hm(p) to fi ll the p-neighborhood. The goal is to assess the valid content of the block Hm(p) using a
convenient metric that compares Hm(p) and candidate blocks within ΛΩp. This process is defi ned
by successive applications of the following steps:

1. Given a pixel p ∈ ∂Ω, the block Hm(p) and ΛΩp, the algorithm uses an isophote-based
metric to compare the valid region (unfi lled) of an enlarged block Hn(p) (n ≥ m) with all
candidate blocks Hn(q) ⊂ ΛΩp, taking as the optimal support block, Hn(q̂) (that is, most
similar to block Hn(p)). Then, a smaller block Hm(q̂) ⊂ Hn(q̂) is selected and placed in
Hm(p)⊂ Hn(p) (see Figure 5(b)).

2. After selecting Hm(q̂), the intensity of each missing pixel in the neighborhood of p (r ∈
H(p) := Hm(p)∩Ω) is set as the intensity of the corresponding pixel in H(q̂)⊂ Hm(q̂) (see
Figure 5(c)).

Employing the support regions Hn(q) and ΛΩp to fi nd the desirable pixels makes the search
engine more robust and faster, since it is possible to control the search scope while minimizing the
propagation errors during the completion process.

In order to measure the similarity between Hn(p) (target) and Hn(q) (candidate) blocks we use
a new weighted metric || · ||∆U named normalized root mean-square distance (NRMSD):

10

Fig. 31. Illustrative sketch of the dynamic sampling and the completion
process. (a) ΛΩp (gray and blue parts) is the region inside HL(p) (green
square) which provides candidate pixels. (b) Comparison between content of
patches Hn(p) and Hn(q̂) (optimal patch) and (c) result after copying the
information of interest.

(29) assigns higher weights for pixels located on the edges
of the Laplacian operator of u . The weights of the valid pixels
in Equation (29) are defi ned from the Laplacian of u , ∆ u ,
and then embedded into the distance computation of the pixel
blocks.

2) Experimental Results and Comparisons: In this sec-
tion we present a comparative study against state-of-the-art
inpainting methods when taking the inpainting domain as
input data. Best parameters were tuned according to original
papers as well as the author’s implementation available at their
personal websites for the following methodologies: Texture
synthesis [97], Cartoon/texture decomposition-based inpaint-
ing [98], Exemplar-based inpainting [99], Optimization-based
inpainting [100] and Sparsity-based inpainting [101], [102],
[103], [14], [104].

Comparison with Pure Texture Synthesis. Figure 32(a)
reproduces a synthetic image made up of six different groups
of textures, in which the inpainting region comprises a large
amount of pixels. The challenge is to precisely reconstruct
the boundary regions between distinct textures. It is clear
in Fig. 32(b)-(c) that our framework outperforms the texture
synthesis-based approach [97].

Comparison with Cartoon-Texture Inpainting. The ex-
periment depicted in Figure 32(d)-(f) presents comparative
results with the cartoon-texture inpainting algorithm [98].
Fig. 32(d) shows the input image and Fig. 32(e) depicts the
resulting inpainting by [98]. Notice that some linear artifacts
(inside the water area) were generated during the progress
of the restoration. Our framework (Fig.32(f)), however, better
recovers the natural aspect of the image.

Comparison with Exemplar-based Inpainting. Fig-
ure 32(g) shows a high-quality image. The result obtained
by [99] (Fig. 32(h)) exhibits some artifacts creating incon-
sistent color tonalities. Our technique (Fig. 32(i)), however,
captures fi ne details such as the layers of the ” human eye” .

Comparison with Optimization-based Inpainting. Object
removal problem is investigated in this experiment. Fig. 32(j)
presents a classical example of occluded image, where the goal
is to accurately recover the gate parts hidden by the statue
(Fig. 32(k)) while maintaining the regular aspect of the image.
One can see that the inpainting method by [100] (Fig. 32(l))
results in a non-realistic image, as some parts of the image are
overly smoothed. The proposed method, however, presents a
more natural outcome (Fig. 32(m)), reconstructing the broken
lines in a more satisfactory manner.

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Figure 1:

1

Fig. 32. Comparison with [97] (pure texture synthesis), [98] (cartoon/texture
inpainting), [99] (exemplar-based) and [100] (optimization-based).

Comparison with Missing Block Completion Techniques.
Finally, we fi nish this section performing both qualitative
and quantitative evaluations against a variety of methods that
address the problem of missing block completion. From left-
to-right, we show in Figure 33 the input images and the
inpainting results obtained by [101], [102], [103], [14], [104].
All examples are tricky to handle due to the predominance of
structures and textures around the region to be fi lled. Notice
that the algorithms [102] and [103] produce blurring effect on
the images while the method [101] generates some artifacts
in the outputs. The results reached by [14] as well as the
method [104] are visually better than others but they still suffer
from smoothing effect. In contrast, our technique leads to non-
blurred completion and accurately recovers isophotes and pure
texture regions, producing a pleasant and more realistic result.

For sake of quantitative comparison, PSNR (Peak Signal-
to-Noise Ratio) between recovered and original images from
Figure 33 have been considered (see Table III). Individual as
well as the mean of PSNR values show that the proposed
method quantitatively outperforms the others.
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Fig. 33. Comparison with sparse representation-based inpainting methods.



TABLE III. QUANTITATIVE EVALUATION USING PSNR (IN DB) FOR
ALL COMPARATIVE IMAGES FROM FIGURE 33.

Image [102] [101] [103] [14] [104] Ours

Tissue 20.41 22.43 22.16 23.53 22.21 25.02
Eaves 16.15 22.85 17.86 28.45 26.77 29.30
B.part 18.39 19.20 17.85 23.07 23.61 24.43
Fur 16.46 19.49 20.67 20.87 18.43 21.55
Mean 17.85 20.99 19.64 23.98 22.75 25.08

B. Interactive Photo Colorization via Laplacian Coordinates
Colorization is a computer-supervised process by which

colors are imparted to grayscale images or to black-and-white
films. It has been widely used in photo editing and scientific
illustration, to modernize old films and to enhance the visual
appear of an image. Traditionally, colorization is tedious,
time consuming and requires artistic skills to precisely add
appropriate colors to a grayscale image.

Aiming at making the colorization process simpler and less
laborious, several computational systems have been proposed
in the last decade, which can be roughly divided into two
classes: Example-based [105], [106], [16], [17] and Scribble-
based [107], [108], [109], [110], [111], [17]. Example-based
methods accomplish the colorization process by matching
the luminance of the grayscale image with the luminance
of a reference color image used to drive the colorization.
In scribble-based methods, the user guides the colorization
by defining colored strokes onto the grayscale image. Due
to the flexibility to operate arbitrary colorizations and the
non-requirement for a reference image, scribble-based strategy
has performed better than the example-based one in recent
years [112]. This trend has been observed especially due to the
simplicity of scribble-based methods which basically relies on
an interactive interface in order to work.

The classical work by [107] is a good representative of
scribble-based approach. Levin’s method aims at optimizing
the color of all image pixels using the scribbles as constraints.
Although it shows good results for various types of images,
Levin’s method tends to propagate colors beyond the texture
boundaries, thus resulting in unpleasant colorizations. The
technique proposed by [108] employs adaptive edge detection
so as to prevent colors from going beyond region boundaries.
Further improvements have been proposed by [109], who
present a faster scribble-based color optimization technique
that relies on chrominance blending to perform the coloriza-
tion. [110] and [111] employ texture continuity to colorize
manga-cartoons and natural images, respectively. Despite good
results, most existing scribble-based approach require intensive
user involvement, especially when the image contains complex
structures or has different texture patterns, which can demand
lots of scribbles until acceptable outcomes are reached. In
a more recent work, [17] has introduced an innovative user-
based interface namely ProjColor that relies on a simple drag-
and-drop manipulation of the badly colorized pixels using
multidimensional projection as an recursive tool.

In this work we propose a new approach for colorizing
grayscale images that relies on a scribble-based interface
to replace the excessive provision of user strokes typically
employed by existing scribble-driven methods. Moreover, the
proposed approach holds the good segmentation properties

Fig. 34. Pipeline of our colorization framework.

derived from Laplacian Coordinates [3]. Since Laplacian Coor-
dinates is used to precompute a prior segmentation of the input
monochromatic image, our framework leads to pleasant results
and requires just a few user interventions to colorize the image.
As we shall show, by one-shot stroking the image, the user
can colorize complex textured areas quite easily, preserving
region edges and preventing the addition of new scribbles. In
summary, the main contributions of this work are:

1) A novel interactive image colorization technique that
combines the accuracy and the effectiveness of the
Laplacian Coordinates approach with a fast color
matching scheme to colorize images.

2) An efficient system that allows for recursively col-
orizing the image by reintroducing new seeds to reach
more pleasant results.

3) The new method is easy-to-implement and it requires
just a small amount of user intervention to quickly
reach a good result.

1) Pipeline Overview: As illustrated in Figure 34, the
proposed colorization pipeline comprises three main steps,
namely, User-driven Prior Segmentation, Color Assignment
and Interactive Recolorization. First, color scribbles given by
the user are taken as constraints to the Laplacian Coordinates
approach aiming at generating a prior segmentation. The
partitioning obtained is then used to promote color transfer
between input scribbles and image segments. Badly colored
regions can be updated by interacting with the Laplacian
Coordinates segmentation interface. Details of each stage of
the pipeline are presented in the following sections.

User-driven Prior Segmentation. In this stage we use
Laplacian Coordinates to assist the colorization process by
fragmenting the image into multiple regions. Color labels
are manually chosen by the user and freely spread inside
representative image regions. Those labels are then designed
to condition the linear system of equations formed by the
Laplacian Coordinates approach. After solving the constrained
linear system, the partitions obtained are used to support the
next stage, Color Assignment. Figure 34 (up step) illustrates
the procedure described above.

Color Assignment. The color assignment modulus is respon-
sible for propagating the colors chosen by the user to the



partitions generated by the LC segmentation. The propagation
mechanism is accomplished as follows: given the set of color
labels provided during the segmentation stage, we fi rst convert
those labels to L α β color system. Next, coordinates α and β
are then copied to the uncolored pixels in the specifi ed image
segment. Similar procedure is performed until colorizing the
remaining partitions (see the middle step in Figure 34).

Interactive Manipulation of the Colorization Result. One
of the main contributions of the proposed framework is to ex-
ploit the fl exibility provided by the LC scheme to interactively
modify the colorization. Laplacian Coordinates enables an
interactive tool that allows for repartitioning data by inserting
new seeded pixels. In fact, if the result is not satisfactory,
the user can select badly colored pixels, turning them into
a different color label that can be reintroduced into the LC
linear system to partition the image and, thereby, improve
the resulting colorization. Figure 35 illustrates the need for
user intervention. Notice that a few pixels close to the edge
between the panther and the background grass were not colored
properly as highlighted in Fig. 35(b). User can then provide
an additional color scribble to the region with badly colorized
pixels creating new constraints for the Laplacian Coordinates
and, thus generating a better result as shown in Fig. 35(c).

(a) Initial scribbles (b) The resulting col-
orization

(c) Colorization after
user interaction

Fig. 35. The use of our framework when allowing for user intervention.

2) Results and Comparisons: In order to confi rm the effec-
tiveness of our methodology, we provide comparisons against
the well-established scribble techniques [107], [109], [112].

Figure 36 illustrates the capability of our method to per-
form colorization from a few user intervention. The seeding in-
terface provided by Laplacian Coordinates approach is simpler
than the traditional scribble-based employed by [107], as the
user does not need to spread an excessive number of scribbles
in the whole image to reach a reasonable result. In addition
to its simplicity and ease of use, the colorization mechanism
based on the Laplacian Coordinates produces pleasant results.

The experiment presented in Figure 37 establishes com-
parisons between the proposed technique and scribble-based
methods [107], [109], [112]. Colorizations produced by [107]
and [109] smoothed the images considerably almost all cases
while the outcomes obtained by [112] and our technique
have produced more refi ned results. By reintroducing just a

(a) Scribbles used
by Levin’s method

(b) Levin’s result
from (a)

(c) Scribbles used
by our method

(d) Our result
from (c)

Fig. 36. Comparison between [107] and our framework.

(a) Original (b) Marked (c) Levin et al. (d) Yatziv & Sapiro

(e) Yao et al. (f) Our result (g) New scribbles (h) Updated result

(i) Original (j) Marked (k) Levin et al. (l) Yatziv & Sapiro

(m) Yao et al. (n) Our result (o) New scribbles (p) Updated result

(q) Original (r) Marked (s) Levin et al. (t) Yatziv & Sapiro

(u) Yao et al. (v) Our result (w) New scribbles (x) Updated result

Fig. 7. Comparison between colorization techniques [7, 9, 12] and our approach.Fig. 37. Comparison with [107], [109], [112] and our method.

TABLE IV. PSNR COMPUTATION FOR IMAGES FROM FIG. 37.

Image [107] [109] [112] Ours Updated

Church 35.06 34.38 35.54 37.00 37.43
Horse 29.67 28.62 30.52 31.84 31.87
River 31.82 31.48 32.18 32.95 33.44
Average 32.18 31.49 32.75 33.93 34.25

small amount of seeds in the reference images in Figs.(g)-
(o)-(w), one can see that our approach is quite fl exible in
capturing intrinsic details of the image such as pieces sur-
rounded by image segments, a characteristic not present in
the algorithm [112]. For sake of quantitative comparison,
PSNR between the colorizations and original images in Fig. 37
were computed and summarized in Table IV. Notice from the
average PSNR in the last row of Table IV that our approach
outperforms others.



V. CONCLUSION

This thesis has addressed the fundamental problem of
image segmentation from different perspectives. More specif-
ically, we focus our attention on studying spectral methods
in the context of graph-based image representation. We have
also presented a novel Laplacian-based energy minimization
for image segmentation and two new algorithms that depend
on segmentation to perform image inpainting and colorization.

The combination cartoon-texture decomposition and spec-
tral cut turned out to be a quite efficient methodology for image
segmentation. Moreover, the proposed inner product-based
weight assignment mechanism has produced more accurate
results than the exponential weighting function used by other
spectral clustering methods. The qualitative and quantitative
analysis clearly showed the effectiveness of the proposed
technique, surpassing, in terms of accuracy and smoothness,
representative spectral cut-based methods. Furthermore, the
flexibility as to user intervention is an important trait of our
method, which enables the user to fix the segmentation locally.

The Laplacian Coordinates introduced in Section III is a
novel seed-based image segmentation technique which has
several advantages when compared with other methods. Be-
sides its simple mathematical formulation, Laplacian Coordi-
nates is easy to implement, guarantees a unique solution, and
outperforms existing methods with respect to well established
quantitative measures popularly used in the context of image
segmentation. Laplacian Coordinates also holds high accuracy
in terms of image boundary fitting capability, rendering it an
interesting and compelling seed-based segmentation method.

The new inpainting methodology presented in the last
Section operates by copy-to-paste blocks to recover real and
synthetic images containing a large variety of textures and
structure parts. The combination between interactive image
segmentation, image decomposition and transport equation
were rearranged so as to provide a robust interactive interface
that allows for user involvement while managing the hierarchy
of the restoration task. Images of different complexity lev-
els were evaluated against state-of-the-art methods with the
purpose of assessing the efficiency of the proposed approach.
Our segmentation apparatus has also been successfully used
as a basic tool for the photo colorization application. In
fact, besides enabling a local modification of badly colored
regions, the proposed method turned out to be robust when
dealing with real-world images. In summary, flexibility and
effectiveness render the proposed method one of the most
attractive alternatives in the context of image colorization.
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