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Abstract—The iterative supervised learning setting, in which
learning algorithms can actively query an oracle for labels,
e.g. a human annotator that understands the nature of the
problem, is called active learning. As the learner is allowed to
interactively choose the data from which it learns, it is expected
that the learner would perform better with less training. The
active learning approach is appropriate to machine learning
applications where training labels are costly to obtain but
unlabeled data is abundant. Although active learning has been
widely considered for single-label learning, this is not the case
for multi-label learning, in which objects can have more than one
class label and a multi-label learner is trained to assign multiple
labels simultaneously to an object. There are different scenarios
to query the annotator. This work focuses on the scenario in
which the evaluation of unlabeled data is taken into account to
select the object to be labeled. In this scenario, several multi-
label active learning algorithms were identified in the literature.
These algorithms were implemented in a common framework
and experimentally evaluated in two multi-label datasets which
have different properties. The influence of the properties of the
datasets in the results obtained by the multi-label active learning
algoritm is highlighted.

I. INTRODUCTION

Different approaches to enhance supervised learning have
been proposed over the years. As supervised learning algo-
rithms build classifiers based on labelled training examples,
several of these approaches aim to reduce the amount of time
and effort needed to obtain labeled data for training. Active
learning is one of these approaches. The key idea of active
learning is to minimize labeling costs by allowing the learner
to query for the labels of the most informative unlabeled data
instances. These queries are posed to an oracle, e.g. a human
annotator, which understands the nature of the problem. This
way, an active learner can substantially reduce the number of
labeled data required to construct the classifier.

Active learning has been widely considered to support
single-label learning, in which each object (instance) in the
dataset is associated with only one class label. However, this
is not the case in multi-label learning, where each object is
associated with a subset of labels. Due to the large number of
real-world problems which fall into this category, the problem
of multi-label classification has attracted great interest in the
last decade.

There are different active learning scenarios to query the
annotator. The focus of this work is on the scenario where the

evaluation of unlabeled data is taken into account to select the
objects to be labeled. In this scenario, several multi-label active
learning algorithms proposed in the literature were identified.
These algorithms were implemented in a common framework
and experimentally evaluated in two multi-label datasets which
have different properties. Several aspects considered by these
algorithms, as well as the experimental protocol used to
evaluate the results, are highlighted.

The remainder of this work is organized as follows: Sec-
tion II briefly presents active learning and multi-label learning.
Section III describes some important issues to be considered
when applying active learning on multi-label data. Section IV
presents the experiments carried out and the main results.
Conclusions and future work are presented in Section V.

II. BACKGROUND

A. Active Learning

Differently from the passive model of supervised learning
where the values of the target variable(s) is/are obtained
without taking into account the learning algorithm, in active
learning the learner interactively requests supervision for the
data points of its own choice.

There are basically the three main active learning scenar-
ios [1], [2]:

1) membership query synthesis;
2) stream-based; and
3) pool-based.

In the first active learning scenario, the learner may query
any unlabeled instance in the input space and also queries
generates by the learner de novo (synthesis). The second
scenario considers the data sequentially, deciding individually
whether an unlabeled object should or not be labeled. In the
pool-based scenario, all unlabeled data (or unlabeled pool) is
evaluated before selecting one or more objects to be labeled.
Figure 1 shows a standard pool-based active learning cycle.

This work focus on the pool-based scenario, as it is suitable
for a large number of real-world problems, such as text classi-
fication, image classification and retrieval, video classification,
speech recognition and cancer diagnosis [1], [3], [4], [5].



Fig. 1. Standard pool-based active learning cycle. Figure taken from [1].

B. Multi-Label Learning

In single-label learning, only one label from a disjoint set of
labels L is associated to each example in the dataset. However,
there are many applications in which the examples can be
associated to several labels simultaneously, characterizing a
multi-label learning problem.

Let D be a training set composed of N examples Ei =
(xi, Yi), i = 1..N . Each example Ei is associated with
a feature vector xi = (xi1, xi2, . . . , xiM ) described by M
features Xj , j = 1..M , and a subset of labels Yi ⊆ L, where
L = {y1, y2, . . . , yq} is the set of q labels. A multi-label
learning task consists of generating a classifier H , which given
an unlabeled instance E = (x, ?), is capable of accurately
predicting its subset of labels Y , i.e., H(E)→ Y .

In a more generic scenario, the goal of multi-label learning
is also to generate a model that is capable to predict a
ranking of the labels, relevance scores (sometimes marginal
probabilities) per label, or even the full joint probability
distribution for the labels. k

Multi-label learning methods can be organized into two
main categories: i) algorithm adaptation; and ii) problem trans-
formation [6]. Methods in the first category extends specific
single-label learning algorithms to deal with multi-label data
directly. Methods in the second category transform a multi-
label problem into one or more single-label problems in which
any traditional single-label learning algorithms can be applied.
Binary Relevance (BR) is one of the most used methods in
this category. BR decomposes the multi-label problem into q
binary single-label problems, one for each label in L, and it
solves each problem separately.

Unlike the single-label classification evaluation measures,
multi-label classification must deal with partially correct clas-
sifications. To this end, several evaluation measures have been
proposed. A complete discussion on multi-label classification
evaluation measures is out of the scope of this paper, and can
be found in [6]. In what follows, we briefly describe the label-
based evaluation measures used in this work.

For each single label yi ∈ L, the q binary classifiers are
initially evaluated using any one of the binary evaluation
measures proposed in the literature, which are afterwards
averaged over all labels. Two averaging operations, macro-
averaging and micro-averaging, can be used to average over

all labels.
Let B
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be a binary evaluation mea-

sure calculated for a label yi based on the number of true
positive (TP ), false positive (FP ), true negative (TN ) and
false negative (FN ). In this work we use the F-Measure
= 2TP

2TP+FP+FN
. The macro-average version of B is defined

by Equation 1 and the micro-average by Equation 2.
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As macro-averaging would be more affected by labels that
participate in fewer multi-labels, it is appropriate in the study
of unbalanced datasets.

III. ACTIVE LEARNING FROM MULTI-LABEL DATA

There are a number of issues that need to be considered
when attempting to apply active learning on multi-label data.
In the following sections we focus on the most important ones.

A. Manual annotation approaches and effort

Similarly to a single-label active learning system, a multi-
label active learning system can request the annotation of one
or more objects. If the request is for just one object, then the
annotator will observe (look at, read, hear, watch) the object
in an attempt to understand it and characterize it as relevant
or not to each of the labels. In practice, requests are made
for a batch of objects. For example, ground truth acquisition
for the ImageCLEF 2011 photo annotation and concept-based
retrieval tasks was achieved via crowd-sourcing in batches of
10 and 24 images [7]. In such cases, there are two ways that
an annotator can accomplish the task:

1) object-wise, where for each object the annotator deter-
mines the relevancy to each label; and

2) label-wise, where for each label the annotator determines
relevancy to each object1.

Consider a request for the annotation of n objects with q
labels. Let

- co be the average cost of understanding an object;
- cl be the average cost of understanding a label; and
- clo be the average cost of deciding whether an object

should be annotated with a particular label or not.
If we set aside the cognitive and psychological aspects

of the annotation process, such as our short-term memory
capacity, then a rough estimation of the total cost of object-
wise annotation is:

n[co + q(cl + clo)] = nco + nqcl + nqclo

Similarly, a rough estimation of the total cost of object-wise
annotation is:

1Object-wise and label-wise annotation have been called global and local
labeling respectively in [8]



q[cl + n(co + clo)] = qcl + nqco + nqclo

Assuming that the cost of label-wise annotation is smaller than
that of object-wise annotation, we have:

qcl + nqco + nqclo < nco + nqcl + nqclo
qcl + nqco < nco + nqcl
n(q − 1)co < q(n− 1)cl
co < q(n−1)

n(q−1)cl ≈
qn
nq cl = cl

This means that choosing the annotation approach, largely
depends on the object and label understanding costs. If object
(label) understanding is larger, then the object (label) wise
approach should be followed.

As Figure 2 illustrates, object understanding is less costly
than label understanding only for images, which humans un-
derstand in milliseconds. Documents, audio and video require
far more time to understand than typical label concepts.

Costs of understanding 

Label cost  
= 

 object/label wise  
boundary 

Fig. 2. The cost of understanding a label in different types of data.

B. Full and partial annotation requests

As mentioned in Section II-A, in classical supervised learn-
ing task the active learning system requests the value of the
target variable for one or more objects. What can the learning
system request in multi-label learning?

Normally it should request the values of all binary target
variables (labels) for one or more objects. Then a (batch) incre-
mental multi-label learning algorithm can update the current
model based on the new examples. A different approach is
taken in [9], where the system requests the values for only a
subset of the labels and subsequently infers the values of the
remaining labels based on label correlations.

Sticking to the values of just a subset of the labels would
require an algorithm that is incremental in terms of partial
training examples. Binary relevance (BR) is perhaps the sole
algorithm fulfilling this requirement, but it is a standard and
often strong baseline. Therefore, the development of active
learning strategies that request partial labeling of objects could
be a worthwhile endeavor. However, there is an implication
on annotation effort that has to be considered. If the system
requests the labeling of the same object at two different
annotation requests, then the cost of understanding this object

would be incurred twice. As discussed in Section III-A, this
is inefficient for most data types.

C. Evaluation of unlabelled instances

The key aspect in a single-label active learning algorithm
is the way it evaluates the informativeness of unlabelled
instances. In multi-label data, the evaluation function (query)
of active learning algorithms comprises two important parts:

1) a function (scoring) to evaluate object-label pairs; and
2) a function (aggregating) to aggregate these scores.
Algorithm 1 shows the general procedure for a batch-size =

t, i.e., t examples are annotated in each round. The evaluation
function query calculates the evidence value of each example
Ei ⊂ Du and returns the t most informative instances,
according to the evidence value used. In each round, these
t examples will be labeled by the oracle and included in the
set Dl of labeled examples.

input : Dl: labeled pool;
Du: unlabeled pool;
L: set of labels;
F : multi-label learner;
Oracle: the annotator;
t: bach size;
R: number of rounds

for r = 1, 2, .., R do
H ← F (Dl)
{Ei}ti=1 ← query(H,L,Du, t)
{Yi}ti=1 ← Oracle({Ei}ti=1)
Dl ← Dl ∪ {(Ei, Yi)}ti=1

Du ← Du − {Ei}ti=1
end

Algorithm 1: Multi-label active learning procedure for the
object-wise annotation approach.

Algorithm 2 shows the query function (scoring and aggre-
gating) of a multi-label active learning procedure. The function
scoring considers object-label pairs (Ei, yj) and evaluates the
participation (ei,j) of label yj in object Ei. It returns an evi-
dence value ei,j for all instances Ei ⊂ Du and for each label
yj ∈ L = {y1, y2, ..., yq}. The function aggregating considers
the q evidence values ei,1, ei,2, ..., ei,q of each instance Ei

given by scoring, and combines these values into a unique
evidence value ei.

The following measures have been proposed in the related
work for evaluating object-label pairs (scoring):

Confidence-based score: [10], [8], [11]. The value of
the instances prediction’s confidence returned by the base
classifier is used. The nature of this value depends on the bias
of learner. It could be a margin-based value, a probability-
based value, or others.

Ranking-based score: [11]. This strategy works like a
normalization approach for the values obtained from the
Confidence-based strategy. The confidence given by the base
classifiers are used to rank the unlabeled examples for each
label. The value returned by this approach represents how far



input : Du: unlabeled pool;
L: set of labels;
H: multi-label classifier

output: The t instances with higher evidences

for Ei ∈ Du do
for yj ∈ L do

ei,j ← scoring(Du, H,Ei, yj)
end
ei ← aggregating(ei,1, ei,2, ..., ei,q)

end
query ← best(e1, e2, ...., t,Du)

Algorithm 2: The query function

an example is from the boundary decision threshold between
positive and negatives examples.

Disagreement-based score: [12], [13]. Unlike the other ap-
proaches, this strategy uses two base classifiers and measures
the difference between their predictions. The intuitive idea is to
query the examples that most disagree in their classifications
and could be most informative. Three ways to combine the
confidence values output by the classifiers have been proposed:

1) MMR;
2) HLR; and
3) SHLR.
MMR uses a major classifier which outputs confidence

values and an auxiliary classifier that outputs decisions (pos-
itive or negative only). The auxiliary classifier is used to
determine how conflicting the predictions are. HLR considers
a more strict disagreement using the decisions output by both
classifiers to decide if there is disagreement or agreement
between each label prediction of an example. SHLR tries to
make a balance between MMR and HLR through a function
that defines the influence of each approach in the final score.

After having the object-label scores, there are two main
aggregation strategies to combine the object-label scores to an
overall object score:

1) AVG; and
2) MIN/MAX.

AVG averages the object-label scores across all labels. Thus,
given the q object-label scores ei,j of object Ei, the overall
object-label score of object Ei is given by:

ei = aggregatingavg({ei,j}qj=1) =

∑q
j=1 ei,j

q

On the other hand, MIN/MAX considers the optimal (min-
imum or maximum) of the object-label scores, given by:

ei = aggregatingmin/max({ei,j}qj=1) = min/max({ei,j}qj=1)

D. Experiment protocol

Besides the multi-label active learning strategies themselves,
the way how the evaluation of these methods was performed
is also an important characteristic for the related work. Some
important aspects to be considered are the size of the initial

labeled pool, the batch’s size, the set of examples used as
testing, the sampling strategy and also the evaluation approach.
Next, these aspects are described for each related work.

Regarding the initial labeled pool, each work built it in
different ways. In [11] the examples are chosen to have at least
one example positive and one negative for each label. In [13],
from 100 to 500 examples were selected randomly to compose
the initial labeled pool. In [8], the first 100 chronologically
examples were selected. In [10], the author choose randomly
10 examples to compose the initial labeled pool.

The batch size defines how many examples are queried in
each round of active learning. In [11], [10], only one example
was queried per round. [8] and [13] choose 50 examples in
each round, but the last one also performed experiments with
batch size of 20.

There are basically two different ways to define the testing
set.

The first way is to consider a totally separated testing set —
Figure 3. This way was used in [8] and [10]2.

Original 
dataset

Training 
set

Testing 
set

Labeled 
pool

Unlabeled 
pool

Active 
learning

ClassifierEvaluating classifier

Fig. 3. Experimental protocols using a separated testing set

The other way is to use the remaining examples in the
unlabeled pool as testing — Figure 4. This approach was used
in [11], [13].

Original 
dataset

Labeled 
pool

Unlabeled 
pool

Active 
learning

Classifier

Evaluating classifier

Fig. 4. Experimental protocols using the remaining unlabeled pool

It is worth noting that the quality of the model assessed
using this second approach holds for examples in the unlabeled
pool, and does not necessarily hold for new unlabeled data.

Although there is a lack of discussion about this topic in
the active learning literature, the decision of which evaluation
approach to use depends on the application’s nature. Most
learning applications are interested in building a general

2Actually, there is no explicit description about the testing set, however, it
seems that the authors in [10] used a separated one.



model from a training set of examples to predict future new
examples, e.g., this kind of application uses inductive inference
algorithms to make its predictions. An experimental protocol
using a separated testing set (Figure 3) is the correct evaluation
approach for the performance assessment for the inductive
inference setting.

The remaining evaluation approach (Figure 4) is biased by
the active learner and hence the evaluation on these remaining
examples will not be representative of the actual distribution
of new unseen examples, which is the case for inductive
inference. However, there are active learning applications that
want to predict labels of an a priori known specific set of
examples. The work [11] is an example. The authors argue that
in a real world personal image annotation scenario, the user
would like to annotate some images of his/her collection and
after few rounds of active learning, the system would annotate
the remaining image in the collection. For this application, the
learning assessment should be done by using the remaining
examples in the query pool (Figure 4).

The learning curve is the most common evaluation approach
used to assess active learning techniques, and was used in the
related work. A learning curves plots the evaluation measure
considered as a function of the number of new instance queries
that are labeled and added to Dl. Thus, given the learning
curves of two active learning algorithms, the algorithm which
dominates the other for more or all the points along the
learning curve is better than the other. Besides the learning
curve [11], [13], [8] also used the value of the evaluation
measure in the end of some specific number of rounds to assess
the active learning techniques.

IV. EXPERIMENTS

The active learning algorithms described in
Section III-C, as well as the active learning evaluation
framework, were implemented using Mulan3 [14],
a Java package for multi-label learning based on
Weka4. Our implementation is publicly available to the
community at http://www.labic.icmc.usp.br/pub/mcmonard/
Implementations/Multilabel/active-learning.zip.

A. Setup

The experiments were performed using the datasets Scene
and Yeast, two classic multi-label datasets, which can be found
in the Mulan website5. Scene dataset addresses the problem of
semantic image categorization. Each instance in this dataset is
an image associated with some of the six available semantic
classes (beach, sunset, fall foliage, eld, mountain, and urban).
Yeast is a biological dataset for gen function classification.
Each instance is a yeast gene described by the concatenation of
micro-array expression data and phylogenetic prole associated
with one or more different functional classes.

3http://mulan.sourceforge.net
4http://www.cs.waikato.ac.nz/ml/weka
5http://mulan.sourceforge.net/datasets.html

Table I describes the datasets, where CL (cardinality) and
DL (density) are defined as CL(D) = 1

|D|
∑|D|

i=1 |Yi| and

DL(D) = 1
|D|
∑|D|

i=1
|Yi|
q , respectively.

TABLE I
DATASETS DESCRIPTION

Dataset domain #ex #feat q CL DL #dist
Scene image 2407 294 6 1.074 0.179 15
Yeast biology 2417 103 14 4.237 0.303 198

These two datasets have different properties. Although both
datasets have similar number of examples, Scene dataset has
low number of labels (6), few different multi-labels (15) and
low cardinality (1.074). On the other hand, Yeast dataset has
14 labels, 198 different multi-labels, and a reasonably high
cardinality (4.237). This means that instances in the Yeast
dataset have more complex label space than the instances in
the Scene dataset. Thus, learning from the Yeast dataset would
be more difficult than learning from the Scene dataset.

Information related to label frequency is also important to
characterize multi-label datasets. To this end, Table II shows
summary statistics related to labels frequency, where (Min)
Minimum, (1Q) 1st Quartile, (Med) Median, (3Q) 3rd Quartile
and (Max) Maximum. Recall that 1Q, Med and 3Q divide the
sorted labels frequency into four equal parts, each one with
25% of the data. Note that Yeast dataset in unbalanced.

TABLE II
LABELS FREQUENCY STATISTICS

Dataset domain Min 1Q Med 3Q Max
scene image 364 404 429 432 533
yeast biology 34 324 659 953 1816

Figure 5 shows a graphic distribution of the datasets label
frequency using the Violin plot representation, which adds the
information available from local density estimates to the basic
summary statistics inherent in box plots. Note that the Violin
plot may be viewed as boxplots whose boxes have been curved
to reflect the estimated distribution of values over the observed
data range. Moreover, observe that the boxplot is the black box
in the middle, the white dot is the median and the black vertical
lines are the whiskers, which indicate variability outside the
upper and lower quartiles.

As mentioned in Section III-C, the active learning algo-
rithms implemented in this work are combinations of functions
to evaluate object-label pairs and to aggregate these scores.
The functions to evaluate the object-label pairs, i.e., the
scoring function, are:
• Confidence-based (CONF)
• Ranking-based (RANK)
• HLR Disagreement-based (HLR)
• MMR Disagreement-based (MMR)
• SHLR Disagreement-based (SHLR)

and the functions to aggregate the outputted scores, i.e., the
aggregating function, are:
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Fig. 5. Violin plots of label frequencies distribution.

• average (AVG)
• maximum (MAX)
• minimum (MIN)
In this work, the initial labeled pool of examples was built

by randomly choosing examples until having Nini×q positive
single labels, i.e.. until Nini × q ≥

∑|Dl|
i=1 Yi, where Nini is

user-defined. This strategy allows for fairer comparison across
the datasets. Nini = 5, 10, 20 was used in order to evaluate
the influence of different sizes of the initial labeled pool. The
general procedure — Algorithm 1 — was executed with a
batch size t = 1, i.e., one example is annotated in each run.
The Binary Relevance approach and LR-based (logistic re-
gression) as major classifier were used. For the disagreement-
based approaches, we used Support Vector Machines with LR
normalization, which gives probability values as output. Both
learners, named respectively SGD and SMO, are implemented
in the Weka framework.

B. Results and Discussion

Besides the learning curve, another alternative to summarize
the active learning performance is the area under the learning
curve (AULC). In this work, we use the values of AULC to
evaluate the multi-label active learning algorithms.

All results were obtained using 10-folds cross-validation.
All experimental results can be found in the supplemen-
tary material at http://www.labic.icmc.usp.br/pub/mcmonard/
ExperimentalResults/CLEI2015-ALLRESULTS.xls. In what
follows, the main results are presented.

Tables III to VI show the rankings of the AULC obtained
by the different scoring and aggregating functions using the
three different initial labeled pool of examples and the two
experimental protocols to evaluate the classifiers: separated
and remaining.

Independently of the aggregating function used (AVG,
MAX or MIN), most of the methods ranked first use Nini =
20 to set up the initial labeled pool. The number of methods

TABLE III
RANKING AULC - SEPARATED - SCENE

Macro Micro
conf hlr mmr rank shlr conf hlr mmr rank shlr

5 9 2 4 2 8 6 1 6 5 7
avg 10 8 3 8 6 9 8 3 9 3 9

20 7 1 5 3 5 5 2 7 1 8

5 2 7 4 6 7 4 6 3
10 5 9 8 7 9 5 4 4

max 20 1 6 1 3 2 1 2 2

5 4 2 7 1 3 3 8 5
min 10 6 3 9 4 4 8 9 6

20 3 1 5 2 1 2 7 1

TABLE IV
RANKING AULC - REMAINING - SCENE

Macro Micro
conf hlr mmr rank shlr conf hlr mmr rank shlr

avg
5 9 2 5 3 8 9 2 4 3 8

10 8 3 7 6 9 8 3 7 6 9
20 7 1 4 2 5 7 1 5 2 4

max
5 2 9 4 7 2 8 4 6

10 3 8 5 6 4 9 5 7
20 1 6 1 4 1 6 1 3

min
5 5 2 8 1 5 1 8 1

10 6 3 9 3 6 3 9 5
20 4 1 7 2 3 2 7 2

TABLE V
RANKING AULC - SEPARATED - YEAST

Macro Micro
conf hlr mmr rank shlr conf hlr mmr rank shlr

5 6 2 5 5 6 3 2 2 5 2
avg 10 8 3 9 3 9 2 3 8 4 9

20 5 1 7 2 7 1 1 7 1 7

5 7 4 6 3 9 1 3 3
max 10 9 6 4 4 8 4 6 6

20 2 1 1 2 7 3 2 4

5 4 3 8 5 4 5 8 5
min 10 3 8 9 8 6 9 9 8

20 1 2 7 1 5 6 7 1

TABLE VI
RANKING AULC - REMAINING - YEAST

Macro Micro
conf hlr mmr rank shlr conf hlr mmr rank shlr

5 6 1 6 5 7 3 1 2 6 2
avg 10 8 3 9 3 9 2 3 8 4 9

20 5 2 7 1 8 1 2 6 1 7

5 7 4 6 3 9 1 3 3
max 10 9 5 4 4 8 3 5 6

20 2 1 2 2 7 4 2 5

5 3 3 8 5 4 5 7 4
min 10 4 8 9 6 6 9 9 8

20 1 2 7 1 5 7 8 1

ranked first using Nini = 20, from a total of 10 in each
table is: 8 in Table III; 7 in Table IV; 9 in Table V; and
7 in Table VI. Moreover, methods using Nini = 20 were
never ranked last. All the remaining methods ranked first use



Nini = 5. However, diferently than the previous case, methods
using Nini = 5 were also ranked last: 1 in Table III; 3 in
Table IV; 1 in Table V; and 2 in Table VI. Although it is
expected that a greater initial labeled pool of examples could
help active learning, note that in some cases good results can
also be obtained with smaller labeled pool of examples,

Table VII shows the best aggregation and initial labeled pool
configuration (Nini) for each active learning approach based
on the AULC obtained using both experimental protocols,
remaining and separated. The last two columns refer to the
Random strategy which selects at random the examples to
label and it is considered as a baseline. The best results
are highlighted in bold. Results lower or equal than the
corresponding baseline are underlined.

Observe that using the experimental protocol remaining all
results in terms of best aggregation, Nini and active learning
approach are different for both datasets. However, using the
experimental protocol separated, the same best configuration
was found (AVG(20)) for both datasets when using the active
learning approach HLR. When using RANK, the same best
configuration was found (MAX(20) but only when Macro-F1
measure is used to evaluate the model.

Note that the aggregation approach (MAX/MIN) has been
chosen in 85% of all the cases as the best aggregation option.
As previously observed, the most frequent size of the initial
pool is Nini = 20, followed by Nini = 5. It is worth noting
that not only SHLR and HLR do not appear among the best op-
tions, but their best results are most of the time worse than the
corresponding baseline. Although MMR, CONF and RANK
obtain the best results in 4, 2 and 2 cases, respectively, all of
them better than the corresponding baseline, they also present
results which are worse than the corresponding baseline.

Considering the best cases in each of the experimental
protocols, remaining and separated, the same aggegation and
initial labeled pool configurations were found in 15 out of
the 20 cases. Note that in 10 of these 15 cases the value of
AULC using the remaining protocol is greater than the one
using the separated protocol. Recall that the quality of the
model assessed by the remaining protocol holds for examples
in the unlabeled pool, and does not necessarily holds for new
unlabeled data. To this end, the separated protocol should be
used.

To illustrate, the following figures show the learning curves
for MMR, CONF and RANK using MAX(20) as configuration
options, as well as the random baseline, for the first 1000
instances (or rounds as only one instance is labeled in each
round) labeled. Figures 6 and 7 use separated and remaining
as testing protocol, respectively.

Note that the general behavior of the learning curves is quite
different in each dataset, independently of the testing protocol
used. Recall that although both datasets have similar number
of examples, the Yeast dataset is unbalanced, it has more than
twice the number of labels than Scene, as well as greater label
density — Table II.

For dataset Scene using separated as testing protocol —
Figure 6 — the behavior of the learning curves is similar for

Macro-F1 and Micro-F1. In both cases the MMR and RANK
learning curves dominate the baseline. However, after labeling
400 examples, there is little improvement. The learning curve
of MMR is dominated by the baseline until 400 examples are
labeled. Afterwards MMR, as well as MMR and RANK show
little improvement. Using remaining as testing protocol —
Figure 7 — as before, the MMR and RANK learning curves
dominate the baseline and the learning curve of MMR is
dominated by the baseline until 300 examples are labeled.
Afterwards MMR, as well as MMR and RANK show improve-
ment, being MMR the one that shows the grater improvement.

For dataset Yeast using separated as testing protocol —
Figure 6 — only the RANK learning curve dominates the
baseline. The best Macro-F1 and Micro-F1 measure values
are obtained after 200 examples are labeled. The difference
using remaining as testing protocol is that some better Macro-
F1 and Micro-F1 measure values are obtained by RANK after
labeling more examples.

Moreover, observe that differently than for Scene dataset,
in which the Micro-F1 and Macro-F1 measure values are
in the same range, there is a considerable difference among
these values for Yeast dataset, in which Macro-F1 is worse
than Micro-F1. This is due to the fact that Scene is an
unbalanced dataset and Macro-F1 is more affected by labels
that participate in fewer multi-labels.

Comparing Random (passive learning) to the evaluated
active learning methods, Rank was the only strategy that
always outperfomed Random in both datasets.

Note that active learning seems to be more useful for Yeast
than for Scene, as the difference between random and the
active method (RANK) was clearly higher for Yeast. This
behavior could be explained by the datasets properties. Scene
is an easier dataset to learn from than Yeast. Consequently,
Scene has less room for active learning improvements.

V. CONCLUSION

In the classic supervise learning approach, all labels are
obtained in advance, independently of the learning algorithm.
On the other hand, in the active learning approach the learn-
ing algorithm interactively chooses which objects are to be
labeled, aiming to reduce the number of labeled examples
needed to learn. The active learning approach is particularly
important whenever there is abundant unlabeled data available,
but labeling this data is an expensive task. Although active
learning in single-label learning has been investigated over
several decades, this is not the case for multi-label learning.
This work provides a general introduction to multi-label active
learning, focusing on the scenario where the evaluation of
unlabeled data is taken into account to select the objects to
be labeled. In this scenario, several multi-label active learning
algorithms proposed in the literature were identified, imple-
mented in a common framework and experimentally evaluated
in two multi-label datasets which have different properties.

Multi-label active learning seemed to be more useful for
Yeast, a more difficult to learn dataset, than for Scene.
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Fig. 6. Learning curves using separated as testing protocol.

Moreover, the Rank strategy was the only one that always
outperformed the passive learning method (Random).

In future work, we plan to experimentally evaluate these
multi-label learning algorithms in more datasets. Moreover,
we plan to explore the active learning capability in multi-
label semi-supervised learning, which aims to also learn from
unlabeled data. In this case, the disagreement among two (or
more) classifiers can be used by the semi-supervised algorithm
to decide on querying the labels of an object.
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TABLE VII
BEST CONFIGURATION <aggregation>(<Nini>) FOR EACH ACTIVE LEARNING APPROACH AND BOTH EXPERIMENTAL PROTOCOLS.

conf hlr mmr rank shlr rand(5) rand(10) rand(20)

Remaining

Scene Macro MAX(20) AVG(20) MIN(20) MAX(20) MIN(5)
0.608 0.584 0.614 0.610 0.591 0.592 0.583 0.604

Micro MAX(20) AVG(20) MIN(5) MAX(20) MIN(5)
0.592 0.582 0.603 0.598 0.592 0.587 0,574 0.597

Yeast Macro MIN(5) AVG(5) MAX(20) AVG(20) MIN(20)
0.348 0.345 0.344 0.375 0.352 0.346 0.346 0.362

Micro AVG(20) AVG(5) MAX(5) AVG(20) MIN(20)
0.588 0.569 0.556 0.584 0.562 0.562 0.549 0.556

Separated

Scene Macro MAX(20) AVG(20) MIN(20) MAX(20) MIN(5)
0.603 0.573 0.606 0.604 0.587 0.591 0.577 0.600

Micro MAX(20) AVG(20) AVG(5) MAX(20) MIN(5)
0.587 0.572 0.594 0.593 0.578 0.587 0.572 0.594

Yeast Macro MIN(20) AVG(20) MAX(20) MAX(20) MIN(20)
0.344 0.344 0.345 0.377 0.354 0.346 0.346 0.365

Micro AVG(20) AVG(20) MAX(5) AVG(20) MIN(20)
0.585 0.565 0.557 0.584 0.564 0.562 0.549 0.560


