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Abstract—Logical Analysis of Data (LAD) is a two-class
learning algorithm which integrates principles of combinatorics,
optimization, and the theory of Boolean functions. This paper
proposes an algorithm based on mixed integer linear pro-
gramming to extend the LAD methodology to solve multi-class
classification problems, where One-vs-All (OvA) learning models
are efficiently constructed to classify observations in predefined
classes. The utility of the proposed approach is demonstrated
through experiments on multi-class benchmark datasets.
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I. INTRODUCTION

Data mining studies are concerned with extracting mean-
ingful knowledge from large-scale datasets. While there are
various data mining methodologies, considerable number of
principle concepts appears in one form or another in many data
mining applications. A typical data analysis pipeline comprises
four phases: (1) data pre-processing (data transformation,
imputation, feature selection/reduction), (2a) class discovery
(clustering), or (2b) class comparison and discrimination (re-
gression/classification), (3) evaluation (statistical tests/cross-
validation), and (4) interpretation.

With the advent of new technologies research in various
fields has been shifted from hypothesis-driven to data-driven
and classification problem has become ubiquitous in many
real-world applications that require discrimination among pre-
defined classes. Well-known classification algorithms such
as support vector machines [1], [2], neural networks [3],
[4], decision trees [4], [5], k-Nearest Neighbor [6], [7], and
Naive Bayes [5], [4] are designed to solve binary classifi-
cation problems where a learning model is constructed to
separate observations in two predefined classes. However, in
many scenarios, it is desirable to have the ability to separate
observations into more than two classes. Typical examples
include identification of different subtypes of human cancers
[8], protein fold recognition [9], [10], microscopy images [11],
histogram-based image classification [12], handwritten charac-
ter recognition [13], [14], part-of-speech tagging [15], speech
recognition [16], text categorization [17], [18], etc. Since the
problem is of practical importance, there have been several
attempts to extend binary classification algorithms to multi-
class problems in literature. Here are some of them: multiclass
classification [19], [20], [21], [22], discriminant analysis for
multi-class classification [23], [24], multiclass learning [25],
[15], combining many two-class classifiers into a multiclass
classifier [26], [27], [28], [29], [30], multi-class classfication

with applications [31] , mixed-integer programming approach
to multi-class data classification, [32], [33], [34], general
multiclass classfication methods reviews [35], and multiclass
classfication by using support vector machines [36].

The most common approaches to multi-class classification
are the natural extension of binary classification problem
known as All-vs-All (AvA) [37] (also called One-vs-One) and
One-vs-All (OvA) (also called One-vs-Rest). Given a K-class
dataset, AvA scheme assumes that there exits a separator be-
tween any two classes and builds K(K−1)

2 classifiers, denoted
by fij , to distinguish each pair of classes Ci, Cj ∈ C, where
C = {C1, · · · , CK}. Note that fji = −fij . The class of a new
or unseen observation o is then assigned by the use of the
discriminant function

f(o) = arg max
i


∑

j

fij(o)


 . (1)

A less expensive approach OvA assumes the existence of a
single separator between a class Ci (for some i) and all other
classes, and builds K different binary classifiers. Let fi be the
ith classifier separating observations in class Ci (considered to
be positive) and observations not in Ci (form the set of negative
observations). In this case a new or unseen observation o is
classified by

f(o) = arg max
i
fi(o). (2)

We also remark that since both approaches are easy to adopt,
diverse group of researchers invented them independently.
The choice between the use of AvA and OvA in multi-class
problems is largely computational.

In this paper we adopt the OvA approach and develop a sys-
tematic procedure which takes advantage of computer-related
developments and combinatorial optimization techniques, to
extend a previously successful ad-hoc method, Logical Analy-
sis of Data (LAD), to solve multi-class classification problems.

LAD is a pattern-based two-class learning algorithm which
integrates principles of combinatorics, optimization and the
theory of Boolean functions. The research area of LAD was
introduced and developed by Peter L. Hammer [38] whose
vision expanded the LAD methodology from theory to suc-
cessful data applications in numerous biomedical, industrial,
and economics case studies (see, e.g., [39], [40] and the
references therein). The implementation of LAD algorithm
was described in [41], and several further developments of
the original algorithm were presented in [42], [43], [44], [33],
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[34]. An overview of standard LAD algorithm can be found in
[45], [43]. Various recent applications of LAD are presented
in [46], [47], [48], [49], [50]. LAD algorithm has been also
extended to survival analysis as well [40].

The key ingredient of two-class LAD algorithm is the identi-
fication of patterns, i.e., complex rules distinguishing between
positive and negative observations in a dataset ID = ID+∪ID−,
where ID+ (set of positive observations) and ID− (set of
negative observations) are two disjoint sets containing n-
dimensional real vectors. LAD algorithm usually produces
several hundreds (sometimes thousands) of patterns. Once all
patterns are generated, a subset of patterns is selected by
solving a set covering problem or greedy-type heuristics to
form an LAD classification model such that each positive
(negative) observation is covered by at least one positive
(negative) pattern (and ideally, is not covered by any negative
(positive) pattern) in the model. The patterns selected into the
LAD model are then used to define a discriminant function
that allows the classification of new or unseen observations.

Extensions of LAD algorithm to multi-class problems are
studied by Moreira [51] and Mortada [52]. Moreira [51] pro-
posed two methods to break down a multi-class classification
problem into two-class problems using an AvA approach. The
first method uses the typical AvA type approach which does
not require the alteration of the structure of the standard LAD
algorithm (as described in [39]). The second AvA-type method
modifies the architecture of the pattern generation and theory
formation steps in standard LAD algorithm, where an LAD
pattern Pij is generated for each pair of classes Ci, Cj ∈ C,
i 6= j. After a pattern Pij is generated, its behavior on classes
Ck for all k 6= i, j is examined. These classes can acquire three
different status, called “positive”, “negative”, or “neutral”,
with regard to pattern Pij . These status are determined by the
use of the coverage rate of pattern Pij on class Ck, k 6= i,
j, that is, the proportion of observations from Ck covered
by pattern Pij . Given a dataset with K different classes, the
proposed methodology of Moreira [51] generates a multi-class
LAD modelM and a decomposition matrix D of size |M|×K
with entries

dpk =





ω
(Pij)
k if ω(Pij)

k ≥ ω+

0 if ω− < ω
(Pij)
k < ω+

−1 if ω(Pij)
k ≤ ω−

where 1 ≤ p ≤ |M|, 1 ≤ k ≤ K, 0 ≤ ω
(Pij)
k ≤ 1 is the

coverage rate of pattern Pij on class Ck, and ω+, ω− are
user-defined parameters. The value of entry dpk determines
the status of class Ck with regard to pattern Pij . The proposed
algorithm also generates a matrix R of size K×K, where each
entry stores the differentiability rate of class Ci from class Cj ,
that is, the ratio of observations in Ci covered by patterns in
M which do not cover (or only cover a small proportion of)
observations in Cj . The authors of [51] observed that their
second approach produces less accurate classification models
than those obtained by the first approach, however, decision
rules generated by second approach are more intuitive as they

relate several classes at the same time.
The paper by Mortada [52] proposed a multi-class LAD

method algorithm which integrates ideas from the second
approach presented by Moreira [51] which is based on AvA
approach and an implementation of LAD based on mixed
integer linear programming (MILP) presented by Ryoo and
Jang [34]. The methodology of Mortada [52] was applied to
three multi-class benchmark datasets. The authors of this paper
observed that the MILP based LAD approach of Ryoo and
Jang [34] combined with the second approach of Moreira [51]
provides classification models with higher accuracy than those
models obtained by Moreira [51] approach applied to standard
LAD algorithm.

In this paper we propose an algorithmic approach based on
mixed integer linear programming (MILP) to efficiently build
an OvA-type LAD classifier to identify patterns in a multi-
class dataset. The organization of the paper is as follows. Sec-
tionII describes the basic principles of the standard LAD al-
gorithm. In SectionIII we present our MILP based algorithmic
approach to extend LAD to multi-class data analysis, where
we obtain OvA-type multi-class LAD classifier. In SectionIV
we present experiments on five multi-class benchmark datasets
to demonstrate the utility of our proposed methodology.

II. PRELIMINARIES: LOGICAL ANALYSIS OF DATA

Logical Analysis of Data (LAD) is a two-class learning al-
gorithm based on combinatorics, optimization, and the theory
of Boolean functions. The input dataset, ID, consists of two
disjoint classes ID+ (set of positive observations) and ID−

(set of negative observations), that is, ID = ID+ ∪ ID− and
ID+ ∩ ID− = ∅. The main task of LAD algorithm is to
identify complex rules separating the positive and negative
observations based on features measured [39]. Below we
briefly outline the basic components of the LAD algorithm.
A more detailed overview can be found in [42], [53].

A. Discretization/Binarization and Support Set Selection

This step is the transformation of numeric features (at-
tributes/variables) into several binary features without losing
predictive power. The procedure consists of finding cut-points
for each numeric feature. The set of cut-points can be in-
terpreted as a sequence of threshold values collectively used
to build a global classification model over all features [39].
Discretization is a very useful step in data mining, especially
for the analysis of medical data (which is very noisy and
includes measurement errors) – it reduces noise and produces
robust results. The problem of discretization is well studied
and many powerful methods are presented in literature (see,
e.g., the survey papers [54], [55]).

Discretization step may produce several binary features
some of which may be redundant. Support set is defined as
the smallest (irredundant) subset of binary variables which can
distinguish every pair of positive and negative observations
in the dataset. Support sets can be identified by solving a
minimum set covering problem [39].
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B. Pattern Generation
Patterns are the key ingredients of LAD algorithm. This

step uses the features in combination to produce rules (com-
binatorial patterns) that can define homogenous subgroups of
interest within the data. The simultaneous use of two or more
features allows the identification of more complex rules that
can be used for the precise classification of an observation.

Given a binary (or binarized) dataset ID = ID+∪ID−, where
ID+ ∩ ID− = ∅, a pattern P is simply defined as a subcube
of {0, 1}n, where n is the number of features in the dataset.
A pattern can be also described as a Boolean term, that is, a
conjunction of literals (binary variables or its negation) which
does not contain both a variable and its negation:

P =
∧

j∈NP

xj

where NP ⊆ {1, · · · , n} and xj is a binary variable. The
number of literals (associated with features) involved in the
definition of a pattern is called the degree of the pattern.

Patterns define homogeneous subgroups of observations
with distinctive characteristics. An observation o ∈ ID sat-
isfying the conditions of a pattern P , i.e., P (o) = 1, is
said to be covered by that pattern. A pure positive (negative)
pattern is defined as a combination of features which covers a
proportion of positive (negative) observations, but none of the
negative (positive) ones: P (o) = 1 for at least one o ∈ ID+

(or, o ∈ ID−), and P (o) = 0 for every o ∈ ID− (or,
o ∈ ID+). Coverage of a positive (negative) pattern P , denoted
by Cov(P ), is the set of observations o ∈ ID+(or, o ∈ ID−)
for which P (o) = 1. A pattern P is called a strong pattern if
there is no pattern P ′ such that Cov(P ) ⊂ Cov(P ′). Pattern
P is called a prime pattern if the deletion of any literal from
P results in a term that is no longer a pattern.

The most straightforward approach to pattern generation is
based on the use of combinatorial enumeration techniques,
for example, a bottom-up/top-down approach as described by
Boros et al. [39]. The bottom-up approach follows a lexico-
graphic order in generating the patterns in order to reduce the
amount of computations necessary. The approach starts with
terms of degree one that cover some positive observations.
If such a term does not cover any negative observation, it is
a positive pattern. Otherwise, literals are added to the term
one by one until generating a pattern of prefixed degree. The
top-down pattern generation approach starts by considering all
uncovered observations as patterns of degree n and for each of
those patterns, literals are removed one by one, until a prime
pattern is reached. The enumeration type pattern generation
approach is a costly process. Given a two-class binary dataset
with n features, the total number of candidate patterns to be
searched is

∑n
i=1 2i

(
n
i

)
and the number of degree d patterns

can be 2d
(
n
d

)
.

Since patterns play a central role in LAD methodology,
various types of patterns (e.g., prime, spanned, maximum)
have been studied and several pattern generation algorithms
have been developed for their enumeration [45], [43], [44],
[33], [34].

Our OvA-type multi-class LAD algorithm is motivated by
the MILP approach of Ryoo and Jang [34] that generates
strong LAD patterns in a two-class dataset. This approach is
outlined below:

Consider a two-class dataset ID consisting of m binary
observations and n features. Let I+ = {i : oi ∈ ID+}
and I− = {i : oi ∈ ID−}, where ID = ID+ ∪ ID− and
ID+ ∩ ID− = ∅. For each observation oi ∈ ID, let oij denote
the binary value of the j-th feature in that observation. Let aj ,
j = 1, · · · , n, denote the features in ID and introduce n new
features an+j = 1− aj , j = 1, · · · , n (negation of aj).

Ryoo and Jang [34] formulated the following MILP to
generate strong patterns:

Minimize z = cd+
∑

i∈I+

wi

subject to
2n∑

j=1

oijyj + nwi ≥ d, i ∈ I+

2n∑

j=1

oijyj ≤ d− 1, i ∈ I−

yj + yn+j ≤ 1, j = 1, · · · , n
2n∑

j=1

yj = d

wi ∈ {0, 1}, i = 1, 2, · · · ,m,
yj ∈ {0, 1}, j = 1, 2, · · · , 2n
1 ≤ d ≤ n

(3)

where c ∈ IR is a constant and variables yj and yn+j are asso-
ciated with features aj and an+j , j = 1, · · · , n, respectively.
Binary variables wi’s are associated with the coverage of a
positive pattern P and are defined by

wi =

{
1 ifP (oi) = 0, i ∈ I+
0 ifP (oi) = 1, i ∈ I+

Ryoo and Jang [34] proved that when c > 0, an optimal
solution (w, y, d) of problem (3) is a positive strong prime
pattern of the form:

P =
∧

S1

aj
∧

S2

āj .

where S1 = {j : xj = 1, j = 1, · · · , n} and
S2 = {j : xn+j = 1, j = 1, · · · , n}. Note that if we change
the roles of index sets I+ and I− in problem (3), an optimal
solution of the problem provides us with a pure negative
strong prime pattern when c > 0.

C. LAD Model

An LAD model is a collection of positive and negative
patterns which provides the same separation of the positive
and negative observations as the entire collection of patterns,
called pandect and denoted by P = P+ ∪ P−, where P+

and P− are disjoint sets of all positive and negative patterns
generated in pattern generation step, respectively. In many
cases, when constructing an LAD model, every observation in
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the training dataset is required to be covered at least k times
(k ∈ ZZ+) by the patterns in the model, M = M+ ∪M−,
where M+ ⊆ P+ and M− ⊆ P−. Such an LAD model
can be obtained from the pandect P by solving a set covering
problem. However, in general, the size of the pandect is very
large. In this case the standard LAD algorithm (where patterns
are generated by, for example, top-down/bottom-up approach)
uses greedy heuristics to solve the set-covering problem to
generate an LAD model.

In case of MILP approaches to generate LAD patterns,
Ryoo and Jang [34] presented the following pattern generation
algorithm based on their MILP approach to produce an LAD
model (a set of positive and negative patterns):

Algorithm 1: Pattern Generation
Data: Training data, Support Features, MILP model (3)

for pattern generation
Result: Set of + and − patterns (M+ and M−, resp.)

1 for ∗ ∈ {+,−} do
2 set M∗ = ∅ ;
3 while I∗ 6= ∅ do
4 formulate and solve an instance of the MILP

problem (3);
5 form a pattern P from the solution obtained;
6 M∗ ←M∗ ∪ {P};
7 I∗ ← I∗ \ {i ∈ I∗ : oi is covered by P};

8 return M∗;

Algorithm 1 generates the minimum number of patterns
required to cover the training data set. Note that after a pattern
is generated, observations covered by that pattern is deleted
from the training data to prevent the algorithm from finding
the same pattern found in the previous solutions of problem
(3). The resulting set of positive and negative patterns form
an LAD model M.

D. Classification and Accuracy

Given an LAD modelM =M+∪M−, the classification of
a new (or unseen) observation o /∈ ID is determined by the sign
of a discriminant function ∆ : {0, 1}n → IR associated to the
modelM, where ∆(o) is defined as the difference between the
proportion of positive patterns and negative patterns covering
o, that is,

∆(o) =
∑

P+
k
∈M+

ω+
k P

+
k (o) −

∑

P−
k
∈M−

ω−k P
−
k (o),

where ω+
k ≥ 0 and ω−k ≥ 0 are the weights assigned to

positive patterns P+
k ∈M+ and negative patterns P−k ∈M−,

respectively. The weights ω+
k and ω−k can be calculated in

several ways. One possibility is to use the proportion of
positive (negative) observations covered by a positive pattern
P+
k ∈M+ (a negative pattern P−k ∈M−) to the total number

of positive (negative) observations (called the prevalence of a

pattern):

ω+
k =

1∣∣ID+
∣∣
∑

i∈I+

P+
k (oi) and ω−k =

1

|ID−|
∑

i∈I−
P−k (oi)

where I+ = {i : oi ∈ ID+}, and I− = {i : oi ∈ ID−}.
The accuracy of the model is estimated by classical cross-

validation procedure [56], [57], [58], [59]. If an external
dataset (test/validation set) is available, the performance of
model M is evaluated on that set.

III. MULTI-CLASS LAD ALGORITHM

In this section we present an OvA-type extension of LAD
algorithm to multi-class classification problems. As in conven-
tional LAD algorithm our multi-class LAD approach has four
steps: (i) binarization and support set selection, (ii) pattern
generation, (iii) theory formation, and (iv) classification and
accuracy. These steps are discussed below.

A. Binarization and Support Set Selection

Binarization of a multi-class numeric data is similar to that
of two-class data discussed in Section II-A. Binarization step
associates several cut-points, αvk , and the following indicator
variables to a numeric feature v to transform it into a set of
binary features:

xvk =

{
1 if v ≥ αvk

0 if v < αvk

Transforming the data from discrete levels to indicator vari-
ables results in a multi-class binary dataset. For each variable,
virtually any numerical value can be considered as a cut-point.
However, the cut-points are chosen in a way which allows to
distinguish between observations in different classes, [54].

The multi-class discretization problem is extensively studied
and there are different approaches to accomplish this task,
[60]. In what follows we develop our multi-class LAD method
under the assumption that we are given a binary (or binarized)
multi-class dataset.

B. Pattern Generation: MILP Based Approach

Let ID = ID1∪· · ·∪IDK be a K-class binary dataset with n
features and m observations. Let C = {C1, · · · , CK} denote the
corresponding family of classes in ID, that is, any observation
in IDk has class Ck (k = 1, · · · ,K).

In order to formulate an MILP to generate a pattern PCp
covering some of the observations in class Cp and none of the
observations in Ck, k 6= p, we proceed as follows:

(1) Associate a vector y = (y1, · · · , y2n) ∈ {0, 1}2n to pat-
tern PCp , where the components y1, · · · , y2n of vector y
are relative to the features such that if we have yj = 1
for some j = 1, · · · , n, then the literal xj (associated
with the j-th feature in ID) is included in pattern PCp
and if yn+j = 1, then the literal x̄j (complement of
xj) is included in pattern PCp . Since a pattern cannot
include both xj and x̄j , we impose the condition

yj + yn+j ≤ 1, j = 1, · · · , n. (4)
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(2) Define a binary vector w = (w1, w2, · · · , wm) that is
associated with the coverage of the pattern PCi and will
be used to score penalizations as follows: For 1 ≤ i ≤ m

wi =

{
1 if observation satisfies COND
0 otherwise.

COND: oi in class Cp is not covered by pattern PCp
(3) Consider the augmented matrix B = [ID|ID], where ID is

the binary data obtained from ID by replacing 0 entries
by 1 and 1 entries by 0. Define the vector v = By. In
order to produce a pure pattern PCp with degree d we
prescribe the following constraints:

vi + nwi ≥ d, i ∈ Ip , (5)

vi ≤ d− 1, i ∈ Ik , k = 1, · · · ,K and k 6= p (6)

and
2n∑

j=1

yj = d, (7)

where 1 ≤ d ≤ n, Ip = {i : oi is in class Cp} and
Ik = {i : oi is in class Ck} for all k 6= p.

The conditions in (4)-(7) can be used to write an MILP
whose optimal solution produces a pure pattern PCp associated
with class Cp for some 1 ≤ p ≤ K as shown below:

Minimize z = d+
∑

i∈Ip
wi

subject to
vi + nwi ≥ d, i ∈ Ip
vi ≤ d− 1, i ∈ Ik , k = 1, · · · ,K, k 6= p
yj + yn+j ≤ 1, j = 1, 2, · · · , n
2n∑

j=1

yj = d

wi ∈ {0, 1}, i = 1, 2, · · · ,m
yj ∈ {0, 1}, j = 1, 2, · · · , 2n
1 ≤ d ≤ n

(8)
Notice that problem (8) is a modified version of the MILP

problem (3) of Ryoo and Jang [34] that is designed to generate
patterns in a two-class dataset. An optimal solution of problem
(8) can be used to form a pure strong prime pattern PCp
associated with class Cp, 1 ≤ p ≤ K. The objective function
of (8) ensures that the coverage of pattern PCp is maximized
and the degree of PCp (i.e., the number of literals used in PCp )
is as small as possible. These assertions are provided in the
following two theorems:

a) Theorem:: Let (v∗, y∗,w∗, d∗) be a feasible solution
of problem (8). Then

PCp =
∧

S1

xj
∧

S2

x̄j (9)

where S1 = {j : y∗j = 1, j = 1, · · · , n} and
S2 = {j : y∗n+j = 1, j = 1, · · · , n}, forms a pattern of
degree d associated with class Cp.

Proof: Let (v∗, y∗,w∗, d∗), where v∗ = By∗, be a
feasible solution of problem (8). First note that the constraint

yj + yn+j ≤ 1, j = 1, · · · , n

ensures that the Boolean term PCp shown in (9) does not
contain both xj and x̄j associated with the jth feature in
dataset ID and the condition

2n∑

j=1

yj = d

guarantees that the term PCp is of degree d. The constraint

vi + nwi ≥ d, i ∈ Ip
ensures that PCp covers at least one observation oi in class
Cp, that is, PCp(oi) = 1, i ∈ Ip. If an observation oi, i ∈ Ip,
is covered by PCp , then d yj’s are set to 1 and hence, we
have vi = d, i ∈ Ip, where vi is the ith component of vector
v = By. However, if an observation is not covered by PCp ,
then vi < d, i ∈ Ip, and the term “nwi” is added to the left
hand side to compensate it. Similarly, the condition

vi ≤ d− 1, i ∈ Ik , k = 1, · · · ,K and k 6= p

guarantees that the term PCp does not cover any observation
oi, i /∈ Ip. Thus, the solution (v∗, y∗,w∗, d∗) can be used to
form a pure pattern PCp of degree d that is associated with
class Cp.

b) Theorem:: Let (v∗, y∗,w∗, d∗) be an optimal solution
of problem (8). Then

PCp =
∧

S1

xj
∧

S2

x̄j

with S1 = {j : y∗j = 1, j = 1, · · · , n} and
S2 = {j : y∗n+j = 1, j = 1, · · · , n}, is a strong prime
pattern of degree d associated with class Cp.

Proof: Let (v∗, y∗,w∗, d∗) be an optimal solution of
problem (8), hence, as discussed in the proof of Theorem
III-B0a, it can be used to construct a pure pattern PCp of
degree d that is associated with class Cp. Note that the
objective function of problem (8) minimizes d and the sum∑

i∈Ip wi. When
∑

i∈Ip wi is minimized the optimal solution
to the model ultimately tries to minimize the number of
observations in Ip that are not covered by the constructed
pattern. Similarly, at an optimal solution (v∗, y∗,w∗, d∗), the
term d (corresponding to the degree of a pattern) is minimum.
As a result, an optimal solution to problem (8) can be used to
form a pattern with maximum coverage and minimum degree.
The resulting pattern is a strong prime pattern.

Note that problem (8) produces a strong prime pattern PCp
that covers some of the observations in class Cp, but none of
the observations in Ck, k 6= p. Recall that an LAD model is a
set of patterns where each observation is covered by at least
one pattern. In order to produce set of patterns associated with
class Ck, k = 1, · · · ,K, we shall use an algorithmic approach
as described below.
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C. Theory Formation: One-versus-All (OvA) Type Multi-class
LAD Algorithm

In this section we present an algorithm that produces an
OvA-type multi-class LAD model based on the multi-class
MILP approach given in Section III-B. Note that in case of
two-class MILP approach, Algorithm 1 of Ryoo and Jang [34]
(shown in Section II-C) produces a set of patterns associated
with a positive (negative) class that loops as many times as
necessary until all observations in positive (negative) class
are covered by at least one pattern. The setup proposed by
Ryoo and Jang [34] is inconvenient because a single pattern
is sufficient to cover every observation in positive (negative)
class which results in a classifier with small number of
patterns and hence, poor differentiating power between the
two classes of a dataset. In such cases the prediction of a
new or unseen observation would depend on a single or a
few patterns. Note also that once a positive (negative) pattern
P is found as an optimal solution of problem (3), in order
to produce a new positive (negative) pattern P ′, i.e., another
optimal solution of problem (3), Algorithm 1 removes the
observations covered by pattern P while execution. This is
counterproductive because every time the algorithm uses less
information (smaller training set) to compute new patterns.
Mortada [52] has adopted a similar approach to develop
an AvA-type multi-class LAD algorithm, where observations
covered by a pattern are removed from the training dataset
while execution of the proposed algorithm (see page 87 of
[52]). The difference between Ryoo-Jang’s algorithm [34] and
Mortada’s algorithm [52] is that in Mortada’s algorithm the
looping stops when each observation is covered by l patterns.

In order to avoid the removal of observations from the
training dataset when generating new patterns that forms a
multi-class LAD model, we modify constraint (5) as follows:

Define κ as an m-vector that keeps track of the number of
patterns covering an observation oi ∈ ID for all i = 1, · · · ,m.
Initially, for each class Ck, 1 ≤ k ≤ K we set κ = 0. This
vector shall be updated as new solutions of the MILP problem
(8) are found. With the help of new vector κ, condition (5)
can be replaced by

vi + n (wi + κi) ≥ d, i ∈ Ip . (10)

where κi ≥ 0, i = 1, · · · ,m.
c) Theorem:: Let (v′, y′,w′, d′) be an optimal solution of
problem (8) where the constraint

vi + nwi ≥ d, i ∈ Ip
is replaced by constraint (10). Then

PCp =
∧

S1

xj
∧

S2

x̄j

with S1 = {j : y′j = 1, j = 1, · · · , n} and
S2 = {j : y′n+j = 1, j = 1, · · · , n}, is a degree d strong
prime pattern associated with class Cp.

Proof: The proof of the assertion follows immediately
from the proof of Theorem III-B0a and Theorem III-B0b.

In Algorithm 2 we present our multi-class LAD algorithm
that produces a multi-class LAD model (a set of patterns
associated with class Cp for all p = 1, · · · ,K). The algorithm
is designed to loop as many times as needed until every
observation in the training dataset is covered by at least one
pattern. To ensure that the MILP problem (8) produces a
different optimal solution (to be used to form a pattern PCp
associated with class Cp, p = 1, · · · ,K) at each iteration,
we add systematically a new constraint requiring that an
uncovered observation to be covered at the next iteration. Since
the degree d of a pattern is also a decision variable in our MILP
problem (8), in the worst case it would be possible to generate
a pattern of degree n to cover a particular observation. Hence,
the algorithm ensures that every observation in the dataset is
covered by at least one pattern.

Algorithm 2: Multi-class LAD Algorithm
Input: p: index of current class

1 Global data: ID: binary dataset, b: class vector
Result: MyPats[p] : patterns for class Cp

2 B = [ID|ID];
3 v = B y; (* y unknown variable *)
4 MyPats[p] = {};
5 κ = 0;
6 NewConstraint = {};
7 TotCov = 0;
8 while TotCov < |Ip| do
9 R = {Eq.(4), · · · ,Eq.(7)} ∪ NewConstraint;

10 pat = Minimize
[
d+

∑
i∈Ip wi, R, {v, y,w, d} , Integers

]

;
11 y∗ part of pat corresponding to variables y;
12 for i = 1 to m do
13 if vi = d then
14 κi = κi +1;

15 TotCov = 0;
16 for i = 1 to m do
17 if (i ∈ Ip) ∧ (κi 6= 0) then
18 TotCov = TotCov+1;

19 NotFound = True;
20 for i = 1 to m do
21 if (i ∈ Ip) ∧ (κi = 0) ∧ (vi < d) ∧ (NotFound)

then
22 NewConstraint = {vi = d}; (* d and Y as

unknown variables *)
23 NotFound = False;

24 MyPats[p] = MyPats[p] ∪ {y∗};
25 return MyPats[p];

Algorithm 2 produces a multi-class LAD modelM =M1∪
· · · ∪ MK where Mk, k = 1, · · · ,K, is the set of strong
prime patterns associated with class Ck, k = 1, · · · ,K, and
Mi ∩Mj = ∅ for any i 6= j.
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Note that in Algorithm 2 we do not require the removal of
observations from the training dataset at any iteration. The first
iteration of Algorithm 2 generates a strong prime pattern by
the use of an optimal solution of the original MILP problem
(8) and it does not contain any added constraints. However,
NewConstraint is added to the MILP model each time a new
pattern is generated to prevent the algorithm from finding the
same pattern found at the previous iterations. This is achieved
by introducing κi that keeps track of the number of patterns
covering observations oi ∈ ID and TotCov that counts the
number of observations covered so far.

Another important characteristics of our multi-class LAD
algorithm is that it can detect the inconsistency among the
observations in the given dataset ID. For example, if we have
two observation oi = oj where i ∈ Ip and j ∈ Iq (p 6= q), then
the MILP problem (8) is infeasible. Also, Algorithm 2 can be
implemented by taking an advantage of parallel programming
where a different computer kernel is used to compute a set of
patterns associated with a specific class Cp.

D. Classification and Accuracy

Given a K−class dataset ID = ID1 ∪ · · · ∪ IDK and a
corresponding multi-class LAD modelM =M1∪· · ·∪MK ,
(Mi ∩ Mj = ∅, i 6= j), the classification of a new (or
unseen) observation o /∈ ID is determined by the value of
the discriminant function

∆(o) = arg max
k

∆k(o) (11)

where

∆k(o) =
∑

PCk∈Mk

ωkPCk(o), k = 1, · · · ,K

and ωk ≥ 0 are the weights assigned to patterns PCk ∈ Mk

(k = 1, · · · ,K). The weights ωk can be calculated in several
ways. One possibility is to use the prevalence of patterns that
is defined by

ωk =
1

|IDk|
∑

i∈ICk

PCk(oi)

where IDk ⊂ ID is the set of observations in class Ck and
ICk = {i : oi ∈ IDk} for some 1 ≤ k ≤ K. If ∆(o) =
∆p(o) = ∆q(o) for some p 6= q, then the observation o is
unclassified.

Similar to the two-class classification problem the accuracy
of a multi-class model M is estimated by classical cross-
validation procedure [56], [57], [58], [59]. If an external
dataset (test/validation set) is available, the performance of
the model is evaluated on that set.

IV. EXPERIMENTS

In this section we present experimental results to show
how Algorithm2 described in Section III-C can be used to
solve multi-class classification problems. Regarding to the
stopping criterion, Algorithm 1 ends (by construction) once
all the patterns for each class have been computed. In the
worse case, an ad hoc pattern can be built by the algorithm to

cover a single observation. In our experiments we depend on
the Mathematica procedure Minimize to generate our patterns
by solving the corresponding MILP. It the discretization step
has been done properly, each one of the MILP computed in
Algorithm 1 is feasible. It could be advisible to set a time
limit when invoke Algorithm2, however in our experiments
this was not necessary.

A. An overview of experiments

Algorithm2 is implemented in Wolfram Mathematica 8. An
Intel CORE i7 laptop with 12 GB Memory running Windows
7 was used.

The set of patterns associated with a specific class Cp
(p = 1, · · · ,K) is generated by the use of Mathematica
parallel programming command:

ParallelMap[Multi-class LAD Algorithm, Range[K]]

where K = |C|. ParallelMap applies Algorithm 2 in parallel
to each class Cp, p = 1, · · · ,K.

Parallelization programming speeds up the pattern seeking
process because we can invoke Algorithm2 simultaneously but
with a different class. Sometimes the computation of patterns
for a sigle class may take hours, say 5 hours. If we have 4
classes our total time will be 4 hours and not 20.

In order to test our proposed multi-class LAD methodology
we conduct experiments on five multi-class datasets from UCI
Machine Learning Repository. The steps of the experiments
are outlined below:

(i) Divide the K−class binary (or binarized) dataset
ID = ID1∪· · ·∪ IDK into two disjoint datasets IDTR

(called the training set) and IDTS (called the test set)
such that ID = IDTR ∪ IDTS and IDTR ∩ IDTS = ∅.
The partitioning of ID into subsets IDTR and IDTS

is done randomly by ensuring that the number of
observations with class Ck in those subsets are pro-
portional to the number of observations with class
Ck in the original dataset ID for all k = 1, · · · ,K.

(ii) Run the multi-class LAD algorithm on the training
set IDTR to obtain a multi-class LAD model M =
M1 ∪ · · · ∪ MK , (Mi ∩ Mj = ∅, i 6= j), where
every observation in IDTR is covered by at least one
pattern in M.

(iii) For each observation o ∈ IDTS find the value of

∆k(o) =
∑

PCk∈Mk

ωkPCk(o), k = 1, · · · ,K

(iv) Use the discriminant function ∆(o) in equation (11)
to assign each observation o ∈ IDTS to a class Ck
for some 1 ≤ p ≤ K.

(v) Compute the accuracy of the model M on IDTS.
For each dataset ID we repeat steps (i)-(v) ten times, each
time randomly partitioning the dataset into subsets IDTR and
IDTS. After ten experiments for each dataset are completed,
the overall accuracy is obtained as the average of accuracies
of the ten experiments.
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TABLE I: Five multi-class datasets from UCI repository.
Dataset No. of

Obs./class
Iris 50/1, 50/2, 50/3

CNAE-9
70/1, 57/2, 59/3,
62/4, 58/5, 60/6,
56/7, 54/8, 64/9

Synthetic
control

100/1, 100/2,100/3,
100/4, 100/5, 100/6

Glass
ID

69/1, 76/2, 17/3,
13/4, 9/5, 29/6

Wine 59/1, 71/2, 48/3

B. Datasets

In order to test our proposed multi-class LAD methodology
we conduct experiments on five multi-class datasets from
UCI Machine Learning Repository. Table I summarizes the
characteristics of these datasets.
• Iris: Iris is a well known 3-class dataset. It is comprised

150 observations with 4 numeric (no binary) features per
observation. The dataset contains 50 instances per class.
Each class refers to a type of iris plant.

• CNAE-9: This dataset consists of 1080 observations
with 857 features (552 of which are binary) per observa-
tion categorized in 9 classes. The distribution per class
is as follows: 70 observations in Class 1, 57 in Class
2, 59 in Class 3, 62 in Class 4, 58 in Class 5, 60 in
Class 6, 56 in Class 7, 54 in Class 8, and 64 in Class
9. This dataset corresponds to a set of free text business
descriptions of Brazilian companies.

• Synthetic Control: Synthetic control dataset is a collec-
tion of 600 synthetically generated control charts with
60 real features per observation. There are 6 classes with
100 observations per class distributed as follows: 1-100:
Normal, 101-200: Cyclic, 201-300: Increasing trend,
301-400: Decreasing trend, 401-500: Upward shift, and
501-600: Downward shift.

• Glass Identification: Glass Identification is a 6-classes
dataset consists of 214 observations with 10 features per
observation. The study of classification of types of glass
was motivated by criminological investigation.

• Wine: (http://archive.ics.uci.edu/ml/datasets/Wine)
Wine dataset is a 3-class data containing 13 features
and 178 observations distributed as follows: 59 in Class
1, 71 in Class 2, and 48 in Class 3.

C. Experimental Results

In this section we present experimental results obtained by
our proposed multi-class LAD methodology as described in
Section IV-A. For each dataset the average accuracy of ten
experiments are included in a confusion matrix which con-
tains the proportion of correctly classified observations (main
diagonal entries), misclassified observations (non-diagonal en-
tries) as well as unclassified observations (right most column
denoted by UC).

In order to do comparison, for each dataset we use also
three well known classifiers available in Weka 3.6.8, namely

SMO (support vector machine), J48 (Decision trees) and MP
(Multilayer Perceptron). We summarize the results for each
method as as vector (Name of the method, Correctly classified
instances percentage, Time taken to build model)

1) Iris Dataset: Iris dataset is randomly divided into two
equal subsets: The training data IDTR containing the 50%
of the observations and the test data IDTS containing the
other 50% of the observations. The following confusion matrix
shows the overall accuracy of ten experiments.

Class/Predicted 1 2 3 UC

1 1 0 0 0
2 0 0.91 0.08 0.01
3 0 0.08 0.91 0.01

This experiment took 16.70 seconds. The average accuracy of
the ten experiments is 94% with a standard deviation of 2.2.

Here are what we find if we use in Weka 3.6.8:

(SMO, 96%, 0.04 Seconds),

(J48, 96%, 0.05 Seconds),

(MP, 97.333%, 0.64 Seconds)

2) CNAE-9 Dataset: CNAE-9 dataset is randomly divided
into two subsets, where the training data IDTR contains the
30% of the observations and the test data IDTS contains the
remaining 70% of the observations. The following confusion
matrix shows the overall accuracy of ten experiments.

1 2 3 4 5 6 7 8 9 UC

1 0.87 0.01 0 0.02 0 0 0.01 0 0 0.09
2 0.02 0.85 0.01 0 0 0 0 0 0 0.1
3 0 0 0.77 0.05 0.01 0 0.01 0 0 0.15
4 0 0 0.1 0.67 0.01 0.01 0 0 0.02 0.19
5 0 0 0 0 0.97 0 0 0 0 0.03
6 0 0 0 0.03 0 0.7 0 0 0.01 0.26
7 0 0 0 0 0 0 0.89 0 0.01 0.1
8 0 0 0 0 0 0 0 0.91 0 0.08
9 0.01 0 0 0.04 0 0.02 0.01 0.03 0.6 0.29

The average accuracy of the ten experiments is 80.4% with
a standard deviation of 1.75. This experiment took1 102589
seconds.

Here are what we find if we use in Weka 3.6.8:

(SMO, 94.1667%, 4.46 Seconds),
(J48, 88.7963%, 8.28 Seconds), (MP,%, Seconds)

3) Synthetic Control Dataset: Synthetic Control dataset is
randomly divided into two equal subsets: training data IDTR
containing the 50% of the observations and test data IDTS
containing the other 50% of the observations. The following
confusion matrix shows the overall accuracy of ten experi-
ments.

Class/Predicted 1 2 3 4 5 6 UC

1 0.93 0 0 0 0.02 0 0.05
2 0 0.89 0.06 0 0 0 0.05
3 0 0.05 0.86 0 0.04 0 0.05
4 0.01 0 0 0.88 0 0.03 0.08
5 0 0 0 0 0.98 0 0.02
6 0 0 0 0.03 0.02 0.88 0.06

1Mathematica allows you do computations in a exact or approximate way.
Exact computations normally take more time.
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The average accuracy of the ten experiments is 90.33% with
a standard deviation of 2.4. This experiment took 19436.9
seconds.

Here are what we find if we use in Weka 3.6.8:

(SMO, 99.1667%, 0.17 Seconds),
(J48, 91.6667%, 0.26 Seconds), (MP,%, Seconds)

4) Glass Identification Dataset: If we use the 60% of the
glass identification dataset for training and 40% for testing, the
overall accuracy of ten experiments is 79.54% with a standard
deviation of 5.35. This experiment took 1578.71 seconds. The
following confusion matrix shows the overall accuracy of ten
experiments including the percentage of correct classification,
misclassification and the proportion of unclassified observa-
tions:

Class/Predicted 1 2 3 5 6 7 UC

1 0.84 0.04 0.04 0.02 0 0.02 0.04
2 0.06 0.83 0.01 0 0.04 0.01 0.05
3 0.09 0.07 0.61 0 0 0.03 0.2
5 0.02 0.14 0.04 0.56 0 0.08 0.16
6 0 0.03 0 0.05 0.65 0.03 0.25
7 0.01 0.03 0.03 0.03 0.02 0.86 0.03

5) Wine Dataset: Wine dataset is randomly divided into
two subsets: training data IDTR containing the 75% of the
observations and the test data IDTS containing the remaining
25% of the observations. The following confusion matrix
shows the overall accuracy of ten experiments.

Class/Predicted 1 2 3 UC

1 0.96 0.03 0 0.01
2 0.05 0.85 0.07 0.03
3 0 0.02 0.95 0.03

The average accuracy of the ten experiments is 91.33% with
a standard deviation of 3.54. This experiment took 236.5
seconds.

V. CONCLUSIONS

Along this Chapter we have studied muti-class LAD based
classification. Our discussion started reviewing various efforts
done in order to extend LAD classification that was originally
conceived only for a two-class dataset. Rather than using the
traditional enumerative approach, we adopted here the vision
of Ryoo and Jang by using a MILP to generate LAD patterns.
These researchers propossed an MILP algorithm that works
properly with two-class datasets. We extended their work to
be used for the classification of datasets with K classes, and
adding parallel programming to speed up the computations.
We have tested our approach by using a collection of selected
multi-class datasets taken from UCI repository. Our experi-
ments show that our extended version is successful as we
obtained highly accurate classification models. Our multi-class
approach integrates principles from integer programming and
computer related advancements to efficiently generate LAD
patterns. It is a very promising option to solve multi-class
classification problems.
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