
Multivariate Investigation of NP-Hard Problems:
Boundaries Between Parameterized Tractability and

Intractability

Uéverton dos Santos Souza
Instituto de Computação - Universidade Federal Fluminense

Av. Gal. Milton Tavares de Souza, s/no

São Domingos - Niterói - RJ, CEP: 24210-346, Brazil
Email: usouza@ic.uff.br

Advisor: Fábio Protti
Instituto de Computação - Universidade Federal Fluminense

Av. Gal. Milton Tavares de Souza, s/no, São Domingos
Niterói - RJ, CEP: 24210-346, Brazil

Email: fabio@ic.uff.br

Co-advisor: Maise Dantas da Silva
Dep. Ciência e Tecnologia - Universidade Federal Fluminense

Rua Recife, s/n, Jardim Bela Vista,
Rio das Ostras - RJ, CEP: 28895-532, Brazil

Email: maise@vm.uff.br

Co-advisor: Dieter Rautenbach
Inst. Opt. und Operations Research - Universität Ulm

Helmholtzstraße 18 / Raum 1.68
89081 Ulm, Germany

Email: dieter.rautenbach@uni-ulm.de

Abstract—The main goal when using computing to solve a
problem is to develop a mechanism to solve it efficiently. In
general, this efficiency is associated with solvability in polynomial
time. The theory of NP-completeness was developed to show
which problems probably do not have polynomial time algo-
rithms. However, many NP-hard and NP-complete problems must
still be solved in practice; therefore it is natural to ask if each of
these problems admits an algorithm whose non-polynomial time
complexity is purely a function of some subset of its aspects.
Questions about the existence of such algorithms are addressed
within the theory of parameterized computational complexity
developed by Downey and Fellows.

In this thesis we present a multivariate investigation of the
complexity of some NP-hard problems, i.e., we first develop a
systematic complexity analysis of these problems, defining its
subproblems and mapping which one belongs to each side of
an “imaginary boundary” between polynomial time solvability
and intractability. After that, we analyze which sets of aspects
of these problems are sources of their intractability, that is,
subsets of aspects for which there exists an algorithm to solve
the associated problem, whose non-polynomial time complexity
is purely a function of those sets. Thus, we use classical and
parameterized computational complexity in an alternate and
complementary approach, to show which subproblems of the
given problems are NP-hard and latter to diagnose for which
sets of parameters the problems are fixed-parameter tractable,
or in FPT.

This thesis exhibits a classical and parameterized complexity
analysis of different groups of NP-hard problems. The addressed
problems are divided into four groups of distinct nature, in
the context of data structures, combinatorial games, and graph
theory: (I) and/or graph solution and its variants; (II) flooding-
filling games; (III) problems on P3-convexity; (IV) problems on
induced matchings.

Keywords—Parameterized Complexity, And/Or Graph Solution,
Flood-filling Games on Graphs, P3-Convexity, Induced Matching.

I. INTRODUCTION

The question “P = NP?” is the most important open ques-
tion in computer science, and the theory of NP-completeness
was developed to show which problems probably do not have
polynomial-time algorithms. Though it is nice to know that
some problems do not have polynomial time algorithms unless
P = NP , many NP-hard and NP-complete problems must
still be solved in practice (especially those with real-world
applications); therefore it is natural to ask if each of these
problems admits an algorithm whose non-polynomial time
complexity is purely a function of some subset of its aspects (in
pratice many aspects of the problem often has bounded size or
value). Questions about the existence of such algorithms are
addressed within the theory of parameterized computational
complexity developed by Downey and Fellows [1], [3], [4].

In the first part of the thesis, we present a detailed review
of the theory of parameterized complexity, where the concepts
and techniques involving fixed-parameter tractability and in-
tractability are discussed.

The parameterized complexity theory became very popular
in recent years and has become an important research topic at
many universities around the world. In this sense, the Latin-
American community can be somewhat outdated, with few
Latin-American researchers working on this area. A major
contribution of this thesis is to collaborate in popularizing
the parameterized complexity nationwide. In this regard, as
a consequence of our work, we can mention a narrowing of
the relationship between researchers and the professors Frances
Rosamond and Michael R. Fellows, one of the authors of the
parameterized complexity. This relationship resulted in some
studies developed with their co-authorship, and in particular
in their visit to Latin-American in November 2014 and their
subsequent participation as invited speakers in the 6th Latin
American Workshop on Cliques in Graphs.

In addition, one of the goals of this thesis it is to make

an analysis on the sources of polynomial time intractabil-
ity of some interesting problems. We develop a systematic
complexity analysis of these problems, defining its subprob-
lems and mapping which one belongs to each side of an
“imaginary boundary” between polynomial-time solvability
and intractability. After that, we analyze which sets of aspects
of these problems are sources of their intractability, that is, sub-
sets of aspects for which there exists an algorithm to solve the
associated problem, whose non-polynomial time complexity
is purely a function of these sets. Thus, we use classical and
parameterized computational complexity in an alternate and
complementary approach, to show which subproblems of the
given problems are NP-hard and latter to diagnose for which
sets of parameters the problems are fixed-parameter tractable,
or in FPT.

This thesis exhibits a classical and parameterized com-
plexity analysis of different groups of NP-hard problems.
The problems studied are of distinct nature, and the concepts
discussed have applications in many areas such as software
engineering, distributed systems, artificial intelligence, bioin-
formatics, operational research, social networks, automation,
game theory, among others. Morever, the proofs presented are
of several types such as NP-hardness proofs, polynomial algo-
rithms, structural characterizations, W[1]-hardness and W[2]-
hardness proofs, FPT algorithms, polynomial kernel results,
and infeasibility of polynomial kernels.

The first group of studied problems involve two important
data structures used for modeling many real-word applications,
and/or graphs and x-y graphs. An and/or graph is an acyclic
digraph containing a source, such that every vertex v ∈ V (G)
has a label f(v) ∈ {and,or}. X-y graphs are a generalization
of and/or graphs: every vertex vi of an x-y graph has a label
xi-yi meaning that vi depends on xi of its yi out-neighbors.
We investigate the complexity of finding a solution subgraph
H of such digraphs, which must contain the source and obey
the following rule: if a vertex is included in H then xi of its
out-edges must also be included in H , where an and-vertex
has xi = yi, and an or-vertex has xi = 1.

The second group of problems consists of variants of a one-
player combinatorial game known as the Flood-Filling Game,
which is played on a colored board and whose objective is to
make the board monochromatic (“flood the board”) with the
minimum number of flood moves. A flood move consists of
assigning a new color ci to the a pivot tile p and also to all
the tiles connected to p by a monochromatic path immediately
before the move. The flood-filling game where all moves use
the same pivot p is denoted by Flood-It. When the player can
freely choose which tile will be the pivot of each move the
game is denoted by Free-Flood-It.

The third group comprises some problems on P3-convexity.
More specifically we are interested in identifying either the
minimum P3-geodetic set or the minimum P3-hull set S of a
graph, from which the whole vertex set of G is obtained either
after one or eventual iterations, respectively. Each iteration
adds to a set S′ of vertices all the vertices of V (G) \ S′ with
two neighbors in S′.

The last group of problems studied in this thesis focus on
a classical topic in graph theory. These problems are related
to maximum matchings, maximum induced matchings, and the

distance between them in a graph. The matching number ν(G)
of G is the maximum cardinality of a matching in G, and
a matching with ν(G) edges is a maximum matching of G.
An induced matching is a set M ′ of edges of G at pairwise
distance at least 2. The induced matching number ν2(G) of G
is the maximum cardinality of an induced matching in G, and
an induced matching with ν2(G) edges is a maximum induced
matching. The distance between a maximum matching of a
graph G and its maximum induced matching is the difference
between the cardinality of these sets (ν(G)− ν2(G)).

For each group of problems above, there is a chapter in
this thesis devoted to it. A brief abstract of our work and the
obtained results it is presented at the beginning of each chapter.

Below we present the list of papers developed and pub-
lished throughout my PhD, related to this thesis.

1) Tractability and hardness of flood-filling games on
trees. Theoretical Computer Science, v. 576, p. 102-
116, 2015.

2) Maximum Induced Matchings close to Maximum
Matchings. Theoretical Computer Science, 2015. (to
appear)

3) Complexity Properties of Complementary Prism.
Journal of Combinatorial Optimization, 2015. (to
appear)

4) An algorithmic analysis of Flood-it and Free-Flood-it
on graph powers. Discrete Mathematics and Theoret-
ical Computer Science, v. 16, p. 279-290, 2014.

5) Revisiting the complexity of and/or graph solution.
Journal of Computer and System Sciences, v. 79, p.
1156-1163, 2013.

6) Complexidade Parametrizada para Problemas em
Grafos E/OU. Pesquisa Operacional para o Desen-
volvimento, v. 4, p. 160-174, 2012.

7) The Flood-It game parameterized by the vertex cover
number. Electronic Notes in Discrete Mathematics,
LAGOS 2015.

8) On Graphs with Induced Matching Number Almost
Equal to Matching Number. Electronic Notes in Dis-
crete Mathematics, LAGOS 2015.

9) On P3-convexity of Graphs with Bounded Degree.
Lecture Notes in Computer Science, v. 8546, p. 263-
274, 2014. 10th Conference on Algorithmic Aspects
of Information and Management (AAIM).

10) Parameterized Complexity of Flood-Filling Games on
Trees. Lecture Notes in Computer Science, v. 7936,
p. 531-542, 2013. 19th International Computing and
Combinatorics Conference (COCOON).

11) Complexity of Geodetic Number Problem in
Graphs with Maximum Degree 4. 13th Cologne-
Twente Workshop on Graphs and Comb. Optimization
(CTW), 2015.

12) The P3-Convexity in the Complementary
Prism of a Graph 13th Cologne-Twente Work-
shop on Graphs and Comb. Optimization (CTW),
2015.

13) Parameterized And/Or Graph Solution. 12th Cologne-
Twente Workshop on Graphs and Comb. Optimization
(CTW), 2013.

14) Optimal Variability Selection in Product Line En-

gineering.1 24th Conference on Software Eng. and
Knowledge Engineering (SEKE), 2012.

15) Inundação em Grafos. 16th Congreso Latino
Iberoamericano de Investigación Operativa (CLAIO),
2012.

Other projects were developed and submitted along my PhD,
such as:

16) P3-Convexity Problems on Bounded-Degree and Pla-
nar Graphs. Theoretical Computer Science.

17) Tractability and Kernelization Lower Bound for
And/Or Graph Solution. Discrete Applied Mathemat-
ics.

18) Complexity of Geodetic Number Problem in Graphs
with Bounded Degree. Journal of Computer and
System Sciences.

19) A Multivariate Investigation of Flood-It Game. Dis-
crete Applied Mathematics.

20) Parameterized Problems on Complementary Prisms.
Discrete Mathematics.

The main results of this work are briefly presented as follows.

II. BACKGROUND

A computational problem is a question to be answered,
typically containing several variables whose values are un-
specified. An instance of a problem is created by specifying
particular values for its variables. A problem is described by
specifying both its instances and the nature of solutions for
those instances.

A decision problem Π consists of a set DΠ of instances
and a set YΠ ⊆ DΠ of yes-instances. A decision problem is
described informally by specifying: (i) a generic instance in
terms of its variables; (ii) a yes-no question stated in terms of
the generic instance.

An optimization problem Π consists of a set DΠ of
instances and a set SΠ ⊆ DΠ of solutions such that for each
I ∈ DΠ, there is an associated set SΠ[I] ⊆ SΠ of solutions
for I . An optimization problem is described informally by
specifying: (i) a generic instance in terms of its variables; (ii)
an objective function g to be calculated, and the properties that
must be satisfied by any solution associated with an instance
created from the generic instance. An optimal solution SΠ[I]
is a solution which maximizes/minimizes the value g(SΠ[I]).

An algorithm A for a problem Π is a finite sequence of
instructions for some computer which solves Π. A polynomial
time algorithm is defined to be one whose time complexity
function is O(p(n)) for some polynomial function p, where n
is used to denote the input length [2].

Definition 1: A problem Π belongs to class P if and only
if Π can be solved in polynomial time by a deterministic
algorithm.

Definition 2: A problem Π belongs to class NP if and only
if for a given certificate (a string that certifies the answer to a
computation), there is a deterministic algorithm which verifies
its validity in polynomial time.

1In this paper the authors apply and/or graphs in software engineering
problems.

Definition 3: Given two problems Π and Π′, Π ∝ Π′ (Π is
reducible to Π′ in polynomial time) if there exists an algorithm
that, given an instance I of Π, constructs an instance I ′ of Π′

in polynomial time in |I| such that from a subroutine to I ′, a
correct answer for I is output.

Definition 4: A problem Π′ is NP-hard if for all problems
Π ∈ NP , Π ∝ Π′; if Π′ is also in NP, then Π′ is NP-complete.

It is easy to see that Π ∈ P implies Π ∈ NP . If any
single NP-hard problem can be solved in polynomial time,
then all problems in NP can also be solved in polynomial
time. If any problem in NP cannot be solved in polynomial
time, then so neither can all NP-complete problems. An NP-
complete problem Π, therefore, has the following property:
Π ∈ P if and only if P = NP . The question “P = NP?” is
the most important open question in computer science.

An algorithm is efficient if its complexity function satisfies
some criterion, e.g., the complexity function is a polynomial
in the instance size. A problem is tractable if it has an efficient
algorithm; otherwise, the problem is said to be intractable. As
there are many possible criteria which can be used to define
efficiency, there are many possible types of tractability and
intractability [5].

A. Parameterized Tractability in Pratice

The theory of NP-completeness was developed to show
which problems do not probably have polynomial time algo-
rithms. Since the beginning of this theory in 1971, thousands
of other problems have been shown to be NP-hard and NP-
complete. Though it is nice to know that such problems do
not have polynomial time algorithms unless P = NP , a
inconvenient fact remains: these problems (especially those
with real-world applications) must still be solved. Thus, the
following question emerges:

“How does one solve NP-complete problems efficiently in practice?”

Firstly, we have two possibilities:

× - Try to construct a polynomial time algorithm
(implies P = NP).√

- Invoke some type of polynomial-time heuristic
algorithm.

However, in pratice some set of aspects of the problem has
bounded size or value. There are another approaches:

× - Invoke some type of “brute force” optimal-
solution technique, that in effect runs in polyno-
mial time because its time complexity function
is O(nf(k)), where n is used to denote the input
length and k is some aspect with bounded size or
value. However, when the instances to be solved
are large, this approach may not be feasible.√

- Invoke a non-polynomial time algorithm such that
its non-polynomial time complexity is purely a
function of some subset of aspects of the problem
that are of bounded size or value in practice.

This last approach immediately suggests the following
questions:

1) Given a problem and a subset of aspects of that
problem, is there an algorithm for that problem whose
non-polynomial time complexity is purely a function
of those aspects?

2) Relatively to which aspects of that problem do such
algorithms exist?

If a problem Π for a set K of its aspects admits such
algorithms described in (1), i.e. solvable in f(K).nO(1) time,
then Π ∈ FPT with respect to K (the class of fixed-
parameter tractable problems). Alternatively, one can show
that such algorithm probably does not exist by establishing a
intractability of this version of the problem.

B. Multivariate Investigation

According to Garey and Johnson [2], whenever we are
confronted with a new problem, a natural first question to ask
is: Can it be solved via a polynomial time algorithm? We can
concentrate our efforts on trying to find a polynomial time
algorithm as efficient as possible. However, if no polynomial
time algorithm is apparent, an appropriate second question
to ask is: “Is the problem NP-complete?”. Suppose now we
have just succeeded in demonstrating that our initial problem
is NP-complete. Even though this answers the two questions
which began our analysis, there are still many appropriate
follow-up questions that could be asked. The problem we have
been analyzing is often distilled from a less elegant applied
problem, and some of the details that were dropped in the
distillation process might alter the problem enough to make it
polynomially solvable. If not, there still might be significant
special cases that can be solved in polynomial time. Such
possibilities can be investigated by analyzing subproblems of
our original problem.

It should be apparent that, even though a problem Π is NP-
complete, each of the subproblems of Π might independently
be either NP-complete or polynomially solvable. Assuming
that P 6= NP , we can view the subproblems of any NP-
complete problem Π as lying on different sides of an imag-
inary “boundary” between polynomial time solvability and
intractability [2].

Figure 1 [2] gives a schematic representation for one
possible “current state of knowledge” about a collection of
subproblems of a problem Π.

In this thesis, our first goal when analyzing a problem is
to determine which subproblems lie on each side.

1) Intractability Mapping: Any problem Π contains a
domain D that is the set of all instances of Π. A problem
Π′ is a subproblem of Π if it asks the same question as Π, but
only over a subset of the domain of Π.

Definition 5: Let Π be a problem with domain D and let
C = {a1, a2, . . . , a`} be a subset of aspects of Π. We denote
by:

• [a1=c′1,a2=c′2,. . .,a`=c′`]-Π the subproblem of Π with
domain D′ such that each instance in D′ has aspects
a1, a2, . . . , a` bounded by the constants c′1, c

′
2, . . . , c

′
`

respectively.

Π
Subproblems of Π

NP-complete problems

Open problems
(the “frontier”)

Problems in P

Fig. 1. One possible state of knowledge about subproblems of an NP-
complete problem Π. An arrow from Π1 to Π2 signifies that Π1 is a
subproblem of Π2.

• [a1,a2,. . .,a`]-Π, or [C]-Π, the family of variants of
Π such that every aspect in C is bounded by some
constant.

Given an NP-hard problem Π and a subset C of its aspects,
a systematic complexity analysis starts from the following
steps.

1) Verify if [C]-Π is in P , or NP-hard.
2) If [C]-Π is in P , determine each minimal subset C ′

of C such that [C ′]-Π is in P .
3) If [C]-Π is NP-hard, determine for which values of

the aspects in C the problem is solvable in polyno-
mial time or remains NP-hard.

In a systematic complexity analysis of a problem Π, it
is very common to identify subproblems of Π which can be
solved in polynomial time. In general, it can be shown by
some exhaustive algorithm in time O(nf(k)), where n is used
to denote the input length and k is some aspect with bounded
size or value. Note that, when the instances to be solved are
large, this approach may not be feasible in practice.

A parameter is a function which extracts a particular aspect
or set of aspects of a problem from instances of that problem;
it can also be considered as that set of aspects. As such,
a parameter is both a mechanism for isolating an aspect of
a problem and the “container” in which these aspects are
packaged for subsequent manipulation [5].

Definition 6: A parameterized problem Π is described in-
formally by specifying:

• A generic instance in terms of its variables.

• The aspects of an instance that comprise the parame-
ter.

• A question stated in terms of the generic instance.

Definition 7: Let Π be a NP-hard problem and let S =
{a1, a2, . . . , a`} be a subset of aspects of Π. We denote by:

• Π(a1, a2, . . . , a`), or Π(S), the parameterized version
of Π where the aspects in S are fixed as parameters.

Definition 8: [1] A parameterized problem Π(S) belongs
to the class XP if there exists an algorithm to solve Π(S) in
time f(S).ng(S), where n is used to denote the input length
and f and g are arbitrary functions.

Observation 1: [S]-Π and Π(S) are different problems.
The instances of [S]-Π has the aspects in S with size bounded
by constants, while in Π(S) the parameters are just a mecha-
nism for isolating aspects for subsequent manipulation (in this
case, the aspects not necessarily have bounded size).

Lemma 1: Given an NP-hard problem Π and a subset S of
its aspects, if [S]-Π remains NP-hard, then the parameterized
problem Π(S) is not in XP , unless P = NP .

Proof. If Π is in XP then by definition this problem is solved
by an algorithm that runs in time f(S)ng(S) for some functions
f and g. When the value of every aspect in S is fixed, the
values of f(S) and g(S) become constants and this running
time becomes polynomial in n. As this algorithm also solves
[S]-Π and [S]-Π is NP-hard then P = NP .

Corollary 1: If P 6= NP , then Π(S) is in XP if and only
if [S]-Π is solvable in polynomial time.

Given a problem Π and some subset S = {s1, . . . , sn}
of the aspects of Π, there are 3n different basic families of
variants of the problem, based on which of the aspects is
declared as either:

1) an unrestricted part of the input,
2) part of the aggregate parameterization, or
3) a fixed constant (yielding part of the indexing of the

family of parameterized problems).

Let Π be problem and let S = {s1, . . . , sn} be a subset
of the aspects of Π. [S1]-Π(S2) is the family of parameterized
problems where the aspects in S1 ⊆ S are fixed constants and
the aspects in S2 ⊆ S are aggregate parameters.

A parameterized problem Π(S) belongs to the class
FPT , or fixed-parameter tractable, if there exists an
algorithm to solve Π(S) in time f(S).nO(1), where
n is used to denote the input length and f is an
arbitrary function.

Individual parameterized results are very good at estab-
lishing whether or not a given problem has an FPT-algorithm
for a particular set of aspects of that problem. However,
if one is interested in fully characterizing the set of FPT-
algorithms for parameterized versions of a NP-hard problem,
individual results are not sufficient because a fixed-parameter
tractability (intractability) result says nothing about which
subsets (supersets) of its aspects also render fixed-parameter
tractability (intractability) [5]. In this case, it is necessary to
make a systematic parameterized complexity analysis of the
problem, determining the parameterized complexity relative to
all non-empty subset of aspects of the problem.

A list of parameterized results produced by a systematic
parameterized complexity analysis relative to some set of
aspects S for a problem Π can be visualized as a polynomial
time intractability map that shows which sets of aspects of
the problem can be said to be responsible for (and hence are
sources of) that problem’s polynomial time intractability [5].

Definition 9: [5] Given a NP-hard problem Π and some
subset S of aspects of Π, S is a source of polynomial-time
intractability for Π, if Π(S) is in FPT.

“ In parameterized complexity, the focus is not on
whether a problem is hard, the theory starts from
the assumption that most interesting problems are
intractable when considered classically. The focus is
on the question: What makes the problem computa-
tionally difficult? ”. [1]

In this thesis, one of the goals it is to make an analysis on
the sources of polynomial time intractability of some problems,
that are “minimal” in the sense that their associated FPT-
algorithms are not trivial extensions of other FPT-algorithms.

C. Parameterized Complexity

Classical complexity views a problem as an instance and
a question, where the running time is specified by the input’s
size. However, when a problem comes from “real life” we
always know more about the problem. The problem is planar,
the problem has small width, the problem only concerns small
values of the parameters. Thus, why not have a complexity the-
ory which exploits these structural parameters? Why not have
a complexity theory more fine-tuned to actual applications? [1]

The Parameterized Complexity Theory was proposed by
Downey and Fellows [1] as a promising alternative to deal
with NP-hard problems described by the following general
form: given an object x and a nonnegative integer k, does
x have some property that depends only on k (and not on
the size of x)? In parameterized complexity theory, k is set
as the parameter, considered to be small in comparison with
the size |x| of object x. It may be of high interest for some
problems to ask whether they admit deterministic algorithms
whose running times are exponential with respect to k but
polynomial with respect to |x|.

As is common in complexity theory, we describe problems
as languages over finite alphabets Σ. To distinguish them from
parameterized problems, we refer to sets Π ⊆ Σ∗ of strings
over Σ (nonempty) as classical problems.

Definition 10: Let Σ be a finite alphabet.

1) A parametrization of Σ∗ is a mapping k : Σ∗ → N
that is polynomial time computable.

2) A parameterized problem (over Σ) is a pair (Π, k) =
Π(k), consisting of a set Π ⊆ Σ∗ and a parametriza-
tion k of Σ∗.

Example. Let SAT denote the set of all satisfiable proposi-
tional formulas, where propositional formulas are encoded as
strings over some finite alphabet Σ. Let k : Σ∗ → N be the
parameterization defined by:

k =

{
number of variables of x, (at least one variable),

1, otherwise.
(1)

If Π(k) is a parameterized problem over the alphabet
Σ, then we call strings x ∈ Σ∗ instances of Π(k) and
k, the the corresponding parameter. Usually, we represent a
parameterized problem Π(k) in the form:

Instance: x ∈ Σ.
Parameter: k
Problem: Decide whether x ∈ Π(k).

In the same way that the notion of polynomial time is cen-
tral to the classical formulation of computational complexity, a
central notion to parameterized complexity is fixed-parameter
tractability.

Definition 11: A parameterized problem Π(k) is fixed-
parameter tractable, or FPT, if the question “x ∈ Π(k)?”
can be decided in running time f(k).|x|O(1), where f is an
arbitrary function on nonnegative integers. The corresponding
complexity class is called FPT.

III. COMPLEXITY OF AND/OR GRAPH SOLUTION

The first group of studied problems involve two important
data structures used for modeling many real-word applications,
and/or graphs and x-y graphs. An and/or graph is an acyclic,
edge-weighted directed graph containing a single source vertex
such that every vertex v has a label f(v) ∈ {and,or}. A
solution subgraph H of an and/or-graph must contain the
source and obey the following rule: if an and-vertex (resp.
or-vertex) is included in H then all (resp. one) of its out-
edges must also be included in H . X-y graphs are defined as
a natural generalization of and/or graphs. In this section we
first present the results published in the paper [U. S. Souza, F.
Protti, M. Dantas da Silva, Revisiting the complexity of and/or
graph solution, J. Comput. Syst. Sci. 79:7 (2013) 1156-1163]
where we have investigated the complexity of such problems
under various aspects, including parameterized versions of it.
However, this article kept the main open question still open:
Is the problem of finding a solution subgraph of cost at most
k (where k is a fixed parameter) in FPT? We finish this work
finally presenting a positive answer to this question, via ker-
nelization techniques. Also, using a framework developed by
Bodlaender et al. (2009) and Fortnow and Santhanam (2011),
based upon the notion of compositionality, we show that the
above parameterized problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly .

An and/or graph is an acyclic digraph containing a source
(a vertex that reaches all other vertices by directed paths), such
that every vertex v ∈ V (G) has a label f(v) ∈ {and,or}. In
such digraphs, edges represent dependency relations between
vertices: a vertex labeled and depends on all of its out-
neighbors (conjunctive dependency), while a vertex labeled
or depends on only one of its out-neighbors (disjunctive
dependency).

We define x-y graphs as a generalization of and/or graphs:
every vertex vi of an x-y graph has a label xi-yi to mean that

vi depends on xi of its yi out-neighbors. Given an and/or graph
G, an equivalent x-y graph G′ is easily constructed as follows:
sinks of G are vertices with xi = yi = 0; and-vertices satisfy
xi = yi; and or-vertices satisfy xi = 1.

And/or graphs were used for modeling problems originated
in the 60’s within the domain of Artificial Intelligence. Since
then, they have successfully been applied to other fields,
such as Operations Research, Automation, Robotics, Game
Theory, and Software Engineering, to model cutting problems,
interference tests, failure dependencies, robotic task plans,
assembly/disassembly sequences, game trees, software ver-
sioning, and evaluation of boolean formulas. With respect to
x-y graphs, they correspond to the x-out-of-y model of resource
sharing in distributed systems.

In addition to the above applications, special directed
hypergraphs named F-graphs are equivalent to and/or graphs.
An F-graph is a directed hypergraph where hyperarcs are called
F-arcs (for forward arcs), which are of the form Ei = (Si, Ti)
with |Si| = 1. An F-graph H can be easily transformed into
an and/or graph as follows: for each vertex v ∈ V (H) do
f(v)=or; for each F -arc Ei = (Si, Ti), where |Ti| ≥ 2, do:
create an and-vertex vi, add an edge (u, vi) where {u} = Si,
and add an edge (vi, wj) for all wj ∈ Ti.

The optimization problems associated with and/or graphs
and x-y graphs are formally defined below.

MIN-AND/OR
Instance: An and/or graph G = (V,E) where each edge e has
an integer weight τ(e) > 0.
Goal: Determine the minimum weight of a subdigraph H =
(V ′, E′) of G (solution subgraph) satisfying the following
properties:
• s ∈ V ′;
• if a non-sink node v is in V ′ and f(v)=and then every out-
edge of v belongs to E′;
• if a non-sink node v is in V ′ and f(v)=or then exactly one
out-edge of v belongs to E′.

MIN-X-Y
Instance: An x-y graph G = (V,E) where each edge e has an
integer weight τ(e) > 0.
Goal: Determine the minimum weight of a subdigraph H =
(V ′, E′) of G satisfying the following properties:
• s ∈ V ′;
• for every non-sink node vi in V ′, exactly xi of its yi out-
edges belong to E′.

A. Main obtained results on the problem

Theorem 1: MIN-AND/OR remains NP-hard even for a
very restricted family of and/or graphs where edges have
weight one and or-vertices have out-degree at most two.

Theorem 2:
(a) The parameterized problem MIN-AND/OR0(k), whose
domain includes and/or graphs allowing zero-weight edges, is
W[2]-hard.
(b) MIN-X-Y(k) is W[1]-hard.
(c) MIN-AND/OR(k) is fixed-parameter tractable.

Using a framework developed by Bodlaender et al. (2009)
and Fortnow and Santhanam (2011), based upon the notion
of compositionality, we show that the above parameterized
problem does not admit a polynomial kernel unless NP ⊆
coNP/poly .

Theorem 3: MIN-AND/OR(k) has no polynomial kernel
unless NP ⊆ coNP/poly and consequently PH ⊆ Σp

3.

IV. FLOODING-FILLING GAMES

The second group of studied problems consists of variants
of a one-player combinatorial game known as the Flood-Filling
Game, which is played on a colored board and whose objective
is to make the board monochromatic (“flood the board”) with
the minimum number of flood moves. A flood move consists
of assigning a new color ci to the a pivot tile p and also to all
the tiles connected to p by a monochromatic path immediately
before the move. The flood-filling game where all moves use
the same pivot p is denoted by Flood-It. When the player can
freely choose which tile will be the pivot of each move the
game is denoted by Free-Flood-It.

Flood-It game, originally played on a colored board con-
sisting of an n×m grid, where each tile of the board has an
initial color from a fixed color set. In the classic game, two
tiles are neighboring tiles if they lie in the same row (resp.
column) and in consecutive columns (resp. rows). A sequence
C of tiles is a path when every pair of consecutive tiles in
C is formed by neighboring tiles. A monochromatic path is
a path in which all the tiles have the same color. Two tiles a
and b are m-connected when there is a monochromatic path
between them. In Flood-It, a move consists of assigning a new
color ci to the top left tile p (the pivot) and also to all the tiles
m-connected to p immediately before the move. The objective
of the game is to make the board monochromatic (“flood the
board”) with the minimum number of moves. Figure 2 shows
a sequence of moves to flood a 3 × 3 grid colored with five
colors.

Fig. 2. An optimal sequence of moves to flood a 3 × 3 grid.

We consider these games when played on any graph with
an initial coloring.

Many complexity issues on Flood-It and Free-Flood-It have
recently been investigated. In [25], Arthur, Clifford, Jalsenius,
Montanaro, and Sach show that Flood-It and Free-Flood-It are
NP-hard on n × n grids colored with at least three colors.
Meeks and Scott [28] prove that Free-Flood-It is solvable in
polynomial time on 1 × n grids and on 2-colored graphs,
and also that Flood-It and Free-Flood-It remain NP-hard on
3 × n grids colored with at least four colors. Up to the
authors’ knowledge, the complexity of Flood-It on 3 × n
grids colored with three colors remains as an open question.
Clifford, Jalsenius, Montanaro, and Sach present a polynomial-
time algorithm for Flood-It on 2×n grids. In [29], Meeks and
Scott show that Free-Flood-It remains NP-hard on 2×n grids.
Fleischer and Woeginger [27] proved that Flood-It is NP-hard
on trees.

Flood-filling games in bioinformatics. Since the 90’s, an
increasing number of papers on biological applications have
been dealt with as combinatorial problems. Vertex-colored
graph problems have several applications in bioinformatics.
The Colored Interval Sandwich Problem has applications in
DNA physical mapping and in perfect phylogeny; vertex-
recoloring problems appear in protein-protein interaction net-
works and phylogenetic analysis; the Graph Motif Problem
was introduced in the context of metabolic network analysis;
the Intervalizing Colored Graphs Problem models DNA phys-
ical mapping; and the Triangulating Colored Graph Problem
is polynomially equivalent to the Perfect Phylogeny Problem.

Flood-Filling games on colored graphs are also related to
many problems in bioinformatics. As shown in this paper,
Flood-It played on trees is analogous to a restricted case of
the Shortest Common Supersequence Problem. Consequently,
these games inherit from the Shortest Common Supersequence
Problem many applications in bioinformatics, such as: mi-
croarray production, DNA sequence assembly, and a close
relationship to multiple sequence alignment. In addition, some
disease spreading models, work in a similar way to flood-filling
games.

We present below the formal definitions of the two flood-
filling games studied in this chapter.

Flood-It (decision version)
Instance: A colored graph G with a pivot vertex p, an integer
λ.
Question: Is there a sequence of at most λ flood moves which
makes the graph monochromatic, using p as the pivot in all
moves?

Free-Flood-It (decision version)
Instance: A colored graph G with a pivot vertex p, an integer
λ.
Question: Is there a sequence of at most λ flood moves which
makes the graph monochromatic?

A complete mapping of the complexity of flood-filling
games on trees is made, charting the consequences of single
and aggregate parameterizations. Furthermore, we show that
Flood-It on trees and Restricted Shortest Common Superse-
quence (RSCS) are analogous problems, which proves some
FPT and W[1]-hard of cases of Flood-it. In addition, we prove
that Flood-It remains NP-hard when played on 3-colored trees,
which closes an open question. We also present a general
framework for reducibility from Flood-It to Free-Flood-It.
Analyzing the behavior of these games when played on other
classes of boards, we describe polynomial time algorithms, and
some NP-hard cases. Finally, we show that Flood-it is fixed-
parameter tractable when parameterized by the vertex cover
number, and it has a polynomial kernel if the number of colors
is a second parameter.

Let Π be a flood-filling game and let S = {s1, . . . , sn}
be a subset of the aspects of Π. [S1]-Π(S2) is the family of
parameterized problems where the aspects in S1 ⊆ S are fixed
constants and the aspects in S2 ⊆ S are aggregate parameters.

We consider the following aspects of the problem: c -
number of colors; λ - number of moves; d - maximum distance

of the pivot; o - maximum orbit; k - number of leaves; r -
number of bad moves, r = (λ− c).

A. Main obtained results on the problem

Theorem 4:
(a) [d]-Flood-It on trees remains NP-hard when d = 2.
(b) [d]-Flood-It(c) is in FPT and admits a polynomial kernel-
ization.

Theorem 5:
(a) Flood-It on trees and RSCS are analogous problems.
(b) Flood-It(c, k, λ) on trees is p-analogous to RSCS(|Σ|, `,Λ).

We remark that the book [2] (see Appendix) reports that
the SCS problem is solvable in polynomial time when each
string has size two. This assertion is false, as we can see by
Theorems 4 and 5.

Corollary 2: Flood-It(k, c) on trees is W[1]-hard.

A colored rooted tree is a pc-tree (phylogenetic colored
tree) if no color occurs more than once in any path from the
root to a leaf. A pc-tree T is a cpc-tree if each color occurs
exactly once in any path from the root to a leaf. Restricting
attention to phylogenetic colored trees, we have significant
effects on problem complexity.

Theorem 6:
(a) Flood-It(k) on pc-trees with pivot root is W[1]-hard.
(b) Flood-It on trees remains NP-hard even when restricted to
cpc-trees.
(c) Flood-It(r) on cpc-trees with pivot root is in FPT.
(d) Flood-It(k, r) on trees is in FPT.

Let G be a graph, v ∈ V (G), and ` a positive integer. The
graph ψ(G, v, `) is constructed as follows: (i) create ` disjoint
copies G1, . . . , G` of G; (ii) contract the copies v1, v2, . . . , v`
of v into a single vertex v∗. Let F be a class of graphs. Then:

ψ(F) = {G | G = ψ(G′, v, `) for some triple (G′ ∈
F , v ∈ V (G′), ` > 0) }.

Theorem 7: Flood-It on F is reducible in polynomial time
to Free-Flood-It on ψ(F).

Theorem 8:
(a) Flood-It on trees remains NP-hard even restricted to 3-
colored trees.
(b) Free-Flood-It on trees remains NP-hard even restricted to
3-colored trees..

Theorem 9: In Free-Flood-It on pc-trees, there always ex-
ists an optimal free-flooding which is a flooding with pivot
root.

Theorem 10:
(a) Flood-it is solvable in polynomial time on P 2

n , C2
n, and

2× n circular grids.
(b) Free-Flood-it remains NP-hard on P 2

n , C2
n, and 2 × n

circular grids.

Theorem 11: Flood-it on graphs is fixed-parameter
tractable, FPT, when parameterized by the size of the
minimum vertex cover (k).

Theorem 12: Flood-it on graphs admits a polynomial ker-
nelization when parameterized by the size of the minimum
vertex cover (k) and the number of colors (c).

V. P3-CONVEXITY

The third group comprises some problems on P3-convexity.
More specifically we are interested in identifying either the
minimum P3-geodetic set or the minimum P3-hull set S of a
graph, from which the whole vertex set of G is obtained either
after one or eventual iterations, respectively. Each iteration
adds to a set S of vertices all the vertices of V (G) \ S with
two neighbors in S.

One of the most elementary models of the spreading
of a property within a network – like sharing an idea or
disseminating a virus – one can consider a graph G, a set
S of vertices of G that initially possesses the property, and
an iterative process whereby new vertices u are added to S
whenever sufficiently many (usually two) neighbors of u are
already in S. Similar models were studied in various contexts,
such as statistical physics, social networks, marketing, and
distributed computing.

Let G = (V,E) be a graph. For U ⊆ V , let the
interval I[U] of U in G be the set U ∪ {u ∈ V (G) \ U |
|NG(u) ∩ U | ≥ 2}. A set S of vertices of G is P3-geodetic
if I[S] contains all vertices of G. The P3-geodetic number
gP3(G) (or just g(G)) of a graph G is defined as the minimum
cardinality of a P3-geodetic set. The decision problem related
to determining the P3-geodetic number is known to be NP-
complete for general graphs, and coincides with the well-
studied 2-domination number [40], [43], [44].

A P3-hull set U of G is a set of vertices such that:

• U0 = U

• Uk = I[Uk−1], for k ≥ 1.

• ∃ k ≥ 0 | Uk = V (G)

We define HG(S) ⊆ V (G) as I[S]k+1 such that I[S]k+1 =
I[S]k, k ≥ 0. The cardinality of a minimum P3-hull set of
G is the P3-hull number of G, denoted by hp3(G) (or just
h(G)). Again, the decision problem related to determining the
P3-hull number of a graph is still a well known NP-complete
problem [36].

We analyze the complexity of these problems when some
parameters related to the maximum and minimum degree of
a graph are known. In the following subsection we review
some results on planar satisfiability problems. In Section 2
we present some results on finding a minimum P3-hull set of
graphs with bounded degree. Finally, in Section 3 we analyze
complexity aspects of finding a minimum P3-geodetic set on
planar graphs with bounded degree.

A. Main obtained results on the problem

Theorem 13: Let c be a positive integer. If G is a graph
with δ(G) ≥ |V (G)|

c , then

hP3
(G) ≤ 2

⌈
log(2c)

log
(

2c2

2c2−1

)⌉ + 2c3.

Corollary 3: A minimum P3-hull set of a graph G with
δ(G) ≥ |V (G)|

c (for some constant c) can be found in
polynomial time.

Theorem 14:
(a) P3-HULL NUMBER remains NP-complete on planar graphs
G with ∆(G) = 3.
(b) A minimum P3-hull set of a cubic graph can be found in
polynomial time.

Theorem 15:
(a) P3-GEODETIC NUMBER remains NP-complete on planar
graphs G with ∆(G) = 3.
(b) P3-GEODETIC SET(k) is W[2]-hard.
(c) P3-GEODETIC SET(k,∆) is fixed-parameter tractable.

The complementary prism GḠ of G arises from the disjoint
union of the graph G and its complement Ḡ by adding the
edges of a perfect matching joining pairs of corresponding
vertices of G and Ḡ.

Theorem 16:
(a) To decide whether a compl. prism GḠ has a P3-geodetic
set of size k is NP-complete.
(b) A minimum P3-hull set of a compl. prism GḠ can be
found in polynomial time.

VI. PROBLEMS ON INDUCED MATCHINGS

The last group of problems studied in this thesis focus on
a classical topic in graph theory. These problems are related
to maximum matchings, maximum induced matchings, and the
distance between them in a graph. The matching number ν(G)
of G is the maximum cardinality of a matching in G, and
a matching with ν(G) edges is a maximum matching of G.
An induced matching is a set M ′ of edges of G at pairwise
distance at least 2. The induced matching number ν2(G) of G
is the maximum cardinality of an induced matching in G, and
an induced matching with ν2(G) edges is a maximum induced
matching. The distance between a maximum matching of a
graph G and its maximum induced matching is the difference
between the cardinality of these sets (ν(G)−ν2(G)). We study
graphs G with ν(G) − ν2(G) ≤ k, for some non-negative
integer k.

Let G be a graph with ν(G) − ν2(G) ≤ k for some non-
negative integer k.

Let M1 and M2 be a maximum matching and a max-
imum induced matching of G, respectively, and let H =
(V (G),M1∆M2).

If some component of H is a path with 2 edges, say e1 ∈
M1 and e2 ∈ M2, then (M1 \ {e1}) ∪ {e2} is a maximum
matching of G having more edges in common with M2 than
M1. Iteratively applying this exchange operation to M1, we
may assume that no component of H is a path with 2 edges.

While maximum matchings can be found efficiently [57],
it is algorithmically hard to find a maximum induced matching
[61], [49]. It is even hard to approximate the induced matching
number under substantial restrictions, and efficient exact and
approximation algorithms have been proposed for several
special graph classes (cf. [52], [59] for a detailed discussion).
The fixed parameter tractability of induced matchings when
parameterized by their cardinality was studied in [60], [59],
[52]. While this problem is W [1]-hard in general, it was shown
to be fixed parameter tractable for several restricted graph
classes.

We study graphs where the matching number is not much
larger than the induced matching number. Kobler and Rotics
[56] showed that the graphs where these two numbers coincide,
can be recognized efficiently. Cameron and Walker [51] ex-
tended this result and gave a complete structural description of
these graphs. We review the results from [56], [51] and present
shorter proofs. We study graphs G where ν(G)− ν2(G) ≤ k.
We show that the recognition of these graphs can be done in
polynomial time for fixed k and is fixed parameter tractable
when parameterized by k for graphs of bounded maximum
degree.

A. Main obtained results on the problem

Lemma 2: The components of H are

• isolated vertices,

• paths of length 1 whose edge belongs to M1 \M2,
and

• paths of length 3 whose two leaf edges belong to M1\
M2 and whose middle edges belong to M2 \M1.

Furthermore, H has exactly ν(G)− ν2(G) non-trivial compo-
nents.

Theorem 17: For a fixed non-negative integer k, the graphs
G with ν(G) − ν2(G) ≤ k can be recognized in polynomial
time.

Our next result states that the recognition of those graphs G
with ν(G)− ν2(G) ≤ k that are of bounded maximum degree
is fixed parameter tractable when parameterized by k.

Theorem 18: Let ∆ and k be positive integers. The graphs
G with ν(G)−ν2(G) ≤ k of maximum degree at most ∆ can
be recognized in f(k,∆)nc time where the constant c does
not depend on ∆ or k.

VII. CONCLUSIONS

In this thesis, a multivariate investigation of NP-hard
problems has been carried out as a systematic application
of classical and parameterized complexity techniques. This
approach focused on drawing for each analyzed problem its
boundaries between: (i) polynomial-time solvable and NP-
hard subproblems; (ii) tractable and intractable parameterized
versions. This strategy presents a more refined analysis of
the complexity of problems, as well as their possibilities of
solvability in practice. The idea is to map out when a problem
Π becomes polynomial-time intractable and the sets of aspects
that are responsible for this NP-hardness, i.e., the sets of
aspects for which we can isolate its non-polynomial time
complexity to solve Π as a purely function of them.

The tools used in this systematic analysis are first and
foremost methods for algorithm design, or polynomial-time
reductions (Karp reductions), to demonstrate polynomial time
solvability or NP-hardness of a given problem, respectively. To
show that a problem is fixed-parameter tractable, or in FPT,
with respect to a set of parameters, we apply the bounded
search tree and problem kernel (kernelization) methods. In
another direction, we apply FPT-reductions (parametric re-
ductions) to identify the level of parameterized intractability
(W[t]-hardness, t ≥ 1) of parameterized problems. Since every

problem in FPT has a kernelization algorithm, we also analyze
whether an FPT problem has a kernel of polynomial size
with respect to its parameters. We establish the infeasibility
of polynomial kernels for parameterized problems by a frame-
work developed by Bodlaender et al. [6] and Fortnow and
Santhanam [7], based upon the notion of or-compositionality,
which shows that a problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly .

This thesis make a multivariate investigation of different
groups of NP-hard problems: (i) and/or graph solution and
its variants; (ii) flooding-filling games; (iii) problems on P3-
convexity; (iv) problems on induced matchings.

1) And/or graph solution and its variants. We have
proved that the problem MIN-AND/OR remains NP-
hard even for and/or graphs where edges have weight
one, or-vertices have out-degree at most two, and
vertices with in-degree greater than one are within
distance at most one of a sink; and that deciding
whether there is a solution subtree with weight ex-
actly k of a given x-y tree is also NP-hard. In a pa-
rameterized point of view, we have shown that MIN-
AND/OR0(k) is W[2]-hard, and MIN-X-Y(k) is W[1]-
hard. We also deal with the main question: “Is MIN-
AND/OR(k) ∈ FPT?”. We answer positively to this
question via a reduction to a problem kernel. Finally,
we analyze whether MIN-AND/OR(k) admits a poly-
nomial kernelization algorithm, and using the frame-
work based upon the notion of or-compositionality,
we show that MIN-AND/OR(k) does not admit a
polynomial kernel unless NP ⊆ coNP/poly .

2) Flood-filling games. We analyze the complexity con-
sequences of parameterizing Flood-it and Free-Flood-
it by one or two of the following parameters: c -
number of colors; λ - number of moves; d - maximum
distance of the pivot (or diameter, in the case of
Free-Flood-It); o - maximum orbit; k - number of
leaves; r - number of bad moves. During our analysis
we have shown that Flood-It on trees is analogous
to Restricted Shortest Common Supersequence, and
Flood-It remains NP-hard on 3-colored trees, closing
an open question. We also present a general frame-
work for reducibility from Flood-It to Free-Flood-
It. Analyzing the computational complexity of these
games on other classes of graphs such as powers of
paths, power of cycles, circular grids, and graphs with
bounded vertex cover, we conclude that: (i) Flood-it
can be solved in polynomial time when played on
P 2
n , C2

n, and 2×n circular grids; (ii) Free-Flood-it is
NP-hard when played on P 2

n , C2
n; and 2×n circular

grids. Finally, we prove that Flood-it on graphs is
fixed-parameter tractable considering the size of a
minimum vertex cover as the parameter; in addition,
we show a polynomial kernelization algorithm for
Flood-it when, besides the minimum vertex cover, the
number of colors is also a parameter.

3) Problems on P3-convexity. We prove that: (i) a
minimum P3-hull set of a graph G can be found
in polynomial time when δ(G) ≥ n(G)

c (for some

constant c); (ii) deciding if the size of a minimum P3-
hull set of a graph is at most k remains NP-complete
even on planar graphs with maximum degree four;
(iii) a minimum P3-hull set of a cubic graph can
be found in polynomial time; (iv) a minimum P3-
hull set can be found in polynomial time in graphs
with minimum feedback vertex set of bounded size
and with no vertices of degree two; (v) deciding if
the size of a minimum P3-geodetic set of a planar
graph with maximum degree three is at most k is
NP-complete. Some trivial parameterized results on
P3-geodetic sets are also shown.

4) Problems on induced matchings. We present a short
proof of a structural description of the graphs G
where the matching number ν(G) equals the induced
matching number ν2(G), and use it to study graphs G
with ν(G)−ν2(G) ≤ k. We show that the recognition
of these graphs can be done in polynomial time
for fixed k, and is fixed parameter tractable when
parameterized by k for graphs of bounded maximum
degree. Finally, we extend some of Cameron and
Walker’s results to k-matchings in graphs of suffi-
ciently large girth.

REFERENCES

[1] R. G. Downey, M. Fellows. Parameterized complexity, Springer, 1999.
[2] M. R. Garey and D. S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness. Freeman, 1979.
[3] J. Flum, M. Grohe. Parameterized complexity theory, Springer, 2006.
[4] R. Niedermeier. Invitation to fixed-parameter algorithms, Oxford Uni-

versity Press, 2006.
[5] H. T. Wareham, M. R. Adviser-Fellows. Systematic parameterized com-

plexity analysis in computational phonology, PhD thesis, University of
Victoria, 1999.

[6] Hans L. Boadlaender, Rodney G. Downey, Michael R. Fellows, Danny
Hermelin, On problems without polynomial kernels, Journal of Computer
and System Sciences, v. 75, p. 423-434, 2009.

[7] L. Fortnow, R. Santhanam, Infeasibility of instance compression and
succinct PCPs for NP, Journal of Computer and System Sciences, v.77,
p. 91-106, 2011.

[8] H. L. Boadlaender, Kernelization: New upper and lower bound tech-
niques, in: J. Chen, F. V. Fomin (Eds.), Proceedings of the 4th Inter-
national Workshop on Parameterized and Exact Computation, IWPEC
2009, in: Lecture Notes in Computer Science, v. 5917, Springer Verlag,
p. 17-37, 2009.

[9] Hans L. Boadlaender, Stéphan Thomassé, Anders Yeo, Kernel bounds
for disjoint cycles and disjoint paths, Theoretical Computer Science, v.
412, p. 4570-4578, 2011.

[10] Hans L. Bodlaender, Bart M.P. Jansen, Stefan Kratsch, Kernel
bounds for path and cycle problems, Theoretical Computer Science,
doi:10.1016/j.tcs.2012.09.006, 2012

[11] Cao T., Sanderson, A. C., And/or net representation for robotic task
sequence planning, IEEE Trans. Systems Man Cybernet, Part C: Appli-
cations and Reviews, v. 28, p. 204-218, 1998.

[12] Corandi R., Westfechtel B., Version models for software configuration
management, ACM Computing Surveys, v. 30, p. 233-282, 1998.

[13] DeMello L. S. H., Sanderson A. C., A correct and complete algorithm
for the generation of mechanical assembly sequences, IEEE Trans.
Robotics and Automation, v. 7, p. 228-240, 1991.

[14] Gallo, G., Longo, G., Nguyen, S., Pallottino, S., Directed hypergraphs
and applications, Discrete Applied Mathematics, v. 42, p. 177-201, 1993.

[15] Guo, J., Niedermeier, R., Invitation to Data Reduction and Problem
Kernelization, ACM SIGACT News, v. 38, n. 1, p. 31-45, 2007.

[16] Neeldhara Misra, Venkatesh Raman, Saket Saurabh, Lower Bounds on
Kernelization, Discrete Optimization, v. 8, p. 110-128, 2011.

[17] Karp R. M., Reducibility among combinatorial problems, in R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations,
Plenum Press, 1972.

[18] Medeiros, R. P., Souza, U. S., Protti, F., Murta, L. G. P., Optimal
Variability Selection in Product Line Engineering, Proc. of the 24th
International Conference on Software Engineering and Knowledge En-
gineering - SEKE 2012.

[19] Morabito R., Pureza V., A heuristic approach based on dynamic pro-
gramming and and/or-graph search for the constrained two-dimensional
guillotine cutting problem, Annals of Operation Research, v. 179, p. 297-
315, 2010.

[20] Sahni S., Computationally related problems, SIAM Journal on Comput-
ing, v. 3, n. 4, p. 262-279, 1974.

[21] Souza U. S., Protti F., Dantas da Silva M., Complexidade parametrizada
para problemas em grafos E/OU, Pesquisa Operacional para o Desen-
volvimento, v. 4, n. 2, p. 160-174, 2012.

[22] Souza, U. S., Protti, F., Dantas da Silva, M., Revisiting the Complexity
of And/Or Graph Solution, Journal of Computer and System Sciences,
v. 79, p. 1156-1163, 2013.

[23] Souza, U. S., Protti, F., Dantas da Silva, M., Parameterized And/Or
Graph Solution, Proc. of the 12th Cologne Twente Workshop on Graphs
and Combinatorial Optimization - CTW 2013, 205-208, 2013.

[24] Chee-Keng Yap, Some Consequences of Non-Uniform Conditions on
Uniform Classes, Theoretical Computer Science, v. 26, p. 287-300, 1983.

[25] D. Arthur, R. Clifford, M. Jalsenius, A. Montanaro, and B. Sach, The
Complexity of Flood-Filling Games, in Paolo Boldi and Luisa Gargano,
editors, Proceedings of FUN, Lecture Notes in Computer Science 6099
(2010) 307–318, Springer.

[26] M. R. Fellows, M. T. Hallett, and U. Stege, Analogs & Duals of the
MAST problem for Sequences & Trees, Journal of Algorithms 49:1
(2003) 192–216.

[27] R. Fleischer, G. J. Woeginger, An Algorithmic Analysis of the Honey-
Bee Game, Theoretical Computer Science 452, pp. 75-87, 2012.

[28] K. Meeks and A. Scott, The Complexity of Flood-Filling Games on
Graphs, Discrete Applied Mathematics 160 (2012) 959–969.

[29] K. Meeks and A. Scott, The Complexity of Free-Flood-It on 2 × n
Boards, arXiv:1101.5518v1 [cs.DS], January 2011.

[30] U. S. Souza, F. Protti, and M. Dantas da Silva, Parameterized Com-
plexity of Flood-Filling Games on Trees. In: D.-Z. Du, G. Zhang,
Editors, Proceedings of COCOON 2013 - 19th International Computing
& Combinatorics Conference, Hangzhou, China, June 2013, Lecture
Notes in Computer Science v. 7936, pp. 531-542.

[31] Souza, Protti and Dantas da Silva, “Inundação em Grafos”, 16th
Congreso Latino Iberoamericano de Investigación Operativa & 44th
Simpósio Brasileiro de Pesquisa Operacional, CLAIO/SBPO 2012.

[32] M.R. Cappelle, L. Penso, D. Rautenbach, Recognizing Some Comple-
mentary Products, Theoretical Computer Science, to appear.

[33] P. Balister, B. Bollobás, J.R. Johnson, M. Walters. Random majority
percolation, Random Struct. Algorithms. v. 36, p. 315–340, 2010.

[34] J. Balogh, B. Bollobás. Sharp thresholds in Bootstrap percolation.
Physica A, v. 326, p. 305–312, 2003.

[35] J.-C. Bermond, J. Bond, D. Peleg, S. Perennes. The power of small
coalitions in graphs. Discrete Appl. Math., v. 127, 399–414, 2003.

[36] C. C. Centeno, M. C. Dourado, L. D. Penso, D. Rautenbach, J.
L. Szwarcfiter. Irreversible conversion of graphs. Theor. Comput.
Sci., v. 412, p. 3693–3700, 2011.

[37] C. C. Centeno, L. D. Penso, D. Rautenbach, V. G. P. de Sá. Immediate
versus eventual conversion: comparing geodetic and hull numbers in P 3-
convexity. In: Graph-Theoretic Concepts in Computer Science, Springer,
p. 262-273, 2012.

[38] P.A. Dreyer Jr, F.S. Roberts. Irreversible k-threshold processes: Graph-
theoretical threshold models of the spread of disease and of opinion,
Discrete Appl. Math., v. 157, 1615–1627, 2009.

[39] S.A. Cook, The complexity of theorem-proving procedures, in: Proc.
3rd Ann. ACM Symp. on Theory of Computing Machinery, New York, p.
151-158, 1971.

[40] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater. Fundamentals of domi-
nation in graphs. Marcel Dekker, 1998.

[41] D. Lichtenstein, Planar satisfiability and its uses. SIAM Journal on
Computing, v. 11, p. 329-343, 1982.

[42] ”L. D. Penso, F. Protti, D. Rautenbach, U. S. Souza”, ”On P3-convexity
of Graphs with Bounded Degree”, ”10th International Conference on
Algorithmic Aspects of Information and Management, AAIM 2014”,
2014.

[43] A. Hansberg, L. Volkmann. On graphs with equal domination and 2-
domination numbers. Discrete Mathematics, v. 308, n. 11, p. 2277-2281,
2008.

[44] C. C. Centeno, L.D Penso, D. Rautenbach, V. G. P. de Sá. Geodetic
Number versus Hull Number in P3-Convexity. SIAM Journal on Discrete
Mathematics, v. 27, n. 2, p. 717-731, 2013.

[45] A. Brandstädt and C.T. Hoáng, Maximum induced matchings for
chordal graphs in linear time, Algorithmica 52 (2008) 440-447.

[46] A. Brandstädt and R. Mosca, On distance-3 matchings and induced
matchings, Discrete Appl. Math. 159 (2011) 509-520.

[47] K. Cameron, R. Sritharan, and Y. Tang, Finding a maximum induced
matching in weakly chordal graphs, Discrete Math. 266 (2003) 133-142.

[48] J.-M. Chang, Induced matchings in asteroidal triple-free graphs, Dis-
crete Appl. Math. 132 (2003) 67-78.

[49] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97-
102.

[50] K. Cameron, Induced matchings in intersection graphs, Discrete Math.
278 (2004) 1-9.

[51] K. Cameron and T. Walker, The graphs with maximum induced match-
ing and maximum matching the same size, Discrete Math. 299 (2005)
49-55.

[52] K.K. Dabrowski, M. Demange, and V.V. Lozin, New results on maxi-
mum induced matchings in bipartite graphs and beyond, Theor. Comput.
Sci. 478 (2013) 33-40.

[53] W. Duckworth, D.F. Manlove, and M. Zito, On the approximability
of the maximum induced matching problem, J. Discrete Algorithms 3
(2005) 79-91.

[54] M.C. Golumbic and M. Lewenstein, New results on induced matchings,
Discrete Appl. Math. 101 (2000) 157-165.

[55] Z. Gotthilf and M. Lewenstein, Tighter approximations for maximum
induced matchings in regular graphs, Lecture Notes in Comput. Sci. 3879
(2006) 270-281.

[56] D. Kobler and U. Rotics, Finding maximum induced matchings in
subclasses of claw-free and P5-free graphs, and in graphs with matching
and induced matching of equal maximum size, Algorithmica 37 (2003)
327-346.

[57] L. Lovász and M.D. Plummer, Matching Theory, vol. 29, Annals of
Discrete Mathematics, North-Holland, Amsterdam, 1986.

[58] V.V. Lozin, On maximum induced matchings in bipartite graphs, Inf.
Process. Lett. 81 (2002) 7-11.

[59] H. Moser and S. Sikdar, The parameterized complexity of the induced
matching problem, Discrete Appl. Math. 157 (2009) 715-727.

[60] H. Moser and D.M. Thilikos, Parameterized complexity of finding
regular induced subgraphs, J. Discrete Algorithms 7 (2009) 181-190.

[61] L.J. Stockmeyer and V.V. Vazirani, NP-completeness of some general-
izations of the maximum matching problem, Inf. Process. Lett. 15 (1982)
14-19.

