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Abstract—Translocation is a useful operation on strings with
challenging questions in combinatorics of permutations and
interesting applications in analysis of sequences. A translocation
operation essentially is the interchange of prefixes and suffixes
among two substrings of a string. For the case of genomes repre-
sented as strings, symbols that represent genes and chromosomes
are modeled as substrings of the genomes; thus, translocation is
an operation that models the interaction between chromosomes
inside a genome. The translocation distance between two genomes
is defined as the minimum number of translocations to convert
one genome into another and has been proved to be a meaningful
manner of modeling the evolutive distance between organisms.
The particular case of unsigned genomes, those in which the
orientation of the genes are not considered, is particularly
difficult, while the signed case, in which the orientation of genes
is considered, has been proved to be polynomially decidable.
This paper presents an innovative Genetic Algorithm (GA)
approach to solve the unsigned translocation distance problem. A
distinguishing feature of the proposed GA is that it uses as fitness
function the translocation distance for randomly generated signed
versions of the input (that is an unsigned genome). Experiments
over randomly generated strings (synthetic genomes) showed that
the proposed GA approach computes answers that are better than
those computed by an 1.5+ε-approximation algorithm, the latter
also implemented as part of this work.

Keywords—Unsigned genomes, genetic algorithm, translocation
distance, approximation algorithms, bioinformatics.

I. INTRODUCTION

The comparison of biological sequences is of great rele-
vance in the field of bioinformatics in order to determine the
evolutionary relationships between organism through the re-
construction of the sequence of evolutionary events that trans-
form one genome into another. These rearrangement mecha-
nisms include operations such as: reversals, transpositions, and
translocations. The reversal and transposition operations are
generally applied to genomes of only one chromosome ([1],
[2], [3]), however translocations are operations that are applied
over multiple chromosomes ([4], [5]).

A. Related work

The unsigned translocation distance problem (UTD, for
short) was proved NP-hard by Zhu and Wang in [6] using pre-
vious results that relate the complexity of other problems such
as the decomposition of a graph into k-cliques [7], maximum
cycle decomposition of an Eulerian graph [8], and maximum
decomposition of a bi-colored graph into alternating cycles [8].
As part of its background, this work revisits all steps of this
proof including a compreensive explanation of the polynomial

reduction of the problem of maximum cycle decomposition of
Eulerian graphs into the problem of maximum decomposition
into alternating cycles.

The signed translocation distance problem results much
simpler than the unsigned case. Indeed, the orientation of genes
provides a strong constraint in the genomes that reduces dras-
tically the combinatorics of the problem. The first polynomial
O(n3) solution was prosed by Hannenhalli in [4] giving rise
to several other polynomial algorithms such as a quadratic one
proposed in [9] and a linear algorithm proposed by Bergeron et
al in [5]. The latter has been implemented as part of the system
UniMoG [10] and was reimplemented in the current work in
the C language in order to compute the fitness function of the
proposed GA.

For unsigned genomes, that are the ones treated in this
work, the following approximate solutions were proposed. In
[11], Kececioglu and Ravi gave a 2-approximation algorithm
for computing the translocation distance between unsigned
genomes; Cui et al. presented a 1.75-approximation algorithm
in [12], and further improved the ratio to 1.5+ε in [13].
Currently, to the best of our knowledge, the best approximation
algorithm is one of ratio 1.408+ε proposed in [14].

B. Contribution

We revisit the proof of NP-hardness of the unsigned
translocation distance problem and present a GA approach
for solving this problem. The fitness function is based on
the translocation distance for signed versions of the input
genomes, linearly computed as in [5]. To verify the quality of
the solutions computed by the GA, the 1.5+ε approximation
algorithm [13] was implemented as part of this work.

In the literature, the best proposed solution for UTD is
the 1.408+ε-approximation algorithm, however we chose to
implement the 1.5+ε-approximation algorithm, because the
former one requires calculating approximate solutions for the
maximum set packing problem with set size at most 3 (which
is NP-complete [15]) and for the maximum independent set
problem with maximum degree 4 (which is NP-Complete
[15]), whose computation can not be done in a straightforward
manner. Moreover, for our requirements, the quality of the
solutions provided by both algorithms are similar since the
ratio values are very close. Thus, we implemented the latter
algorithm for using it as a mechanism to control the quality
of the solutions of the proposed GA approach.

The proposed GA takes as input two unsigned genomes A
and B (the latter identified with the identity genome). Initially,
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a population is created by generating signed versions of the
unsigned genome A. Then, this population is improved by
applying genetic operators such as crossover and mutation. The
quality of the individuals is measured by the fitness function,
which is calculated using the linear time algorithm in [5] for
the signed version of the translocation problem. At the end of
all generations the individual (signed genome) with the best
fitness value is chosen.

Several experiments were performed for calculating the
translocations distance, indeed, sets of hundred genomes were
randomly generated as input, with each set of genomes with 10,
20 until 150 genes. The results of these experiments showed
that the proposed GA outperforms the quality of solutions com-
puted by the 1.5+ε approximation algorithm. Regarding run-
ning time, the GA takes approximately 10 seconds for genomes
of length 150, which is an admissible time for analyzing such
sequences. The code was implemented in C and is available at
www.mat.unb.br/∼ayala/publications.html.

C. Organization

Initially, Section II presents the necessary background
to understand the UTD and Section III revisits polynomial
reductions involved in the proof of NP-hardness of the UTD.
Afterwards, Section IV explains the 1.5+ε-approximation al-
gorithm and Section V introduces the GA for solving the
UTD. Finally, before concluding and presenting future work
in Section VIII, Sections VI and VII respectively present the
experiments and discusses quality of the results.

II. BACKGROUND

Standard notation is used (e.g. [5], [4], [13]).

A. Genes, Chromosomes and Genomes

In order to represent the genes inside genomes, each
gene is associated with an integer number. Signed and
unsigned integers represent oriented and non oriented
genes respectively. A chromosome is a sequence of genes
and a genome is an ordered set of chromosomes. To
simplify the model, we consider that each gene appears
only once in the genome. So, a genome G with n
oriented genes and N chromosomes can be seen as a set
{(x11, . . . , x1r1), . . . , (xk1, . . . , xkrk), . . . (xN1, . . . , xNrN )},
where

∑N
i=1 ri = n, xij ∈ {±1, . . . ,±n} and |xij | 6= |xlk|

whenever i 6= l or j 6= k. For the unsigned version,
xij ∈ {1, . . . , n}.

Chromosomes do not have orientation. Thus,
the chromosomes X = (x1, x2, . . . , xk) and X ′ =
(−xk,−xk−1, . . . ,−x1) are the same in the signed
case; whereas X and X ′′ = (xk, xk−1, . . . , x1)
are equal in the unsigned case. So, for example
G = {(+1,−3), (−4,+2,−5)} is a genome with
5 genes and 2 chromosomes; furthermore, G and
G′ = {(+1,−3), (+5,−2,+4)} are the same genome.

To distinguish signed from unsigned genomes the former
are denoted with an arrow: ~G.

Genomes with a sole chromosome can be seen as permuta-
tions π in the symmetric group Sn. Indeed, a permutation is a

bijective function from and into the set of naturals {1, . . . , n}.
A permutation π can be represented as (π1, . . . , πn), where πi
abbreviates π(i), for 1 ≤ i ≤ n.

B. Sub-permutations

Let A and B be genomes with the same genes and S =
(x1, x2, . . . , xn) be a chromosome in A. A sub-permutation
in the chromosome S in A to B (for short, SP in A to B) is
a segment [xi, xi+1, . . . , xi+l] occurring in S with at least 3
genes, such that exactly the naturals between |xi| and |xi+l|
occur in the set {|xi+1|, . . . , |xi+l−1|} and there is another
segment [yj , yj+1, . . . , yj+l] in some chromosome T of the
genome B, satisfying:

• |xi| = |yj | and |xi+l| = |yj+l|;
• {|xi+1|, . . . , |xi+l−1|} = {|yj+1|, . . . , |yj+l−1|};
• [xi, xi+1, . . . , xi+l] 6= [yj , yj+1, . . . , yj+l].

A MinSP is a SP in A to B that does not contain any other
SP. For instance, consider the genomes:
A = {(1, 3, 2, 4, 5, 8, 6), (7, 9)} and
B = {(1, 2, 3, 4, 5, 6), (7, 8, 9)};
[1, 3, 2, 4, 5] is a SP and [1, 3, 2, 4] is a MinSP. For the signed
genomes, [+1,−3,+2,+4,+5] is a SP and [+1,−3,+2,+4]
is a MinSP:
~A = {(+1,−3,+2,+4,+5,+8,+6), (+7,+9)} and
~B = {(+1,+2,+3,+4,+5,+6), (+7,+8,+9)}.

C. Breakpoint Graphs

Breakpoint graphs are an important data structure used
in combinatorics of permutations and also useful for sorting
genomes by translocations and other biological mutations.

Given a chromosome X = (x1, x2, . . . , xn) of a (signed
or unsigned) genome, we say that the genes xi and xi+1, for
1 ≤ i ≤ n− 1, are adjacent; otherwise, they are not adjacent.
Also, genes in different chromosomes are not adjacent.

Consider two signed genomes ~A and ~B with the same
genes and number of chromosomes. We can build the break-
point graph Gs( ~A, ~B) as follows (Fig. 1 illustrates this notion).
For all chromosomes X = (x1, x2, . . . , xn) of ~A and Y =
(y1, y2, . . . , ym) of ~B the following elements are included:

• Vertices: a left-right ordered pair of vertices
(l(xi), r(xi)) = (−xi,+xi), for each gene xi, 1 ≤
i ≤ n;

• Edges: there is a black edge between r(xi) and
l(xi+1), for 1 ≤ i < n and, there is a gray edge
between +yj and −yj+1, if yj and yj+1 are adjacent
in B, 1 ≤ j < m.

Fig. 1. Gs( ~A, ~B) for ~A= {(+1,+3,+7), (+5,−2,+6,+4)} and ~B =
{(+1,−3,−6,+4), (+5,−2,+7)}.
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Notice one gray and one black edge are incident to each
vertex in Gs( ~A, ~B), except for those vertices at the ends
of chromosomes. Therefore, breakpoint graphs can only be
decomposed into color alternating cycles and univocally (cf.
[8]). A cycle is called long, if it contains at least two black
(or gray) edges, otherwise it is short.

Breakpoint graphs are also defined for the unsigned case.
Consider two unsigned genomes A and B with the same genes
and number of chromosomes. The breakpoint graph Gu(A,B)
for A and B is constructed as follows: vertices are given by
the genes in A and for all chromosomes X = (x1, x2, . . . , xn)
in A, there is a black edge between xi and xi+1, 1 ≤ i < n;
and, for all chromosomes Y = (y1, y2, . . . , ym) of B there is
a gray edge between yj and yj+1, whenever yj and yj+1 are
adjacent in B. Fig. 2 illustrates this notion.

Fig. 2. Gu(A,B) for A = {(1, 3, 7), (5, 2, 6, 4)} and B =
{(1, 2, 3, 4), (5, 6, 7)}.

The graph Gu(A,B) can be partitioned into a set of
alternating cycles. Note that each vertex in Gu(A,B) has
the same number of black and gray incident edges: vertices
associated with genes at the end of chromosomes in A have
only one black and one gray edge and internal genes have
exactly two black and two gray edges. Thus, there is more
than one way to partition Gu(A,B) into alternating cycles.

Breakpoint graphs will also be defined for permutations
and we will see that these are almost those graphs obtained for
genomes A and B, where A and B have only one chromosome.

D. Translocation

A translocation is said to be active in two chromosomes X
and Y when both are cut and represented as X = (X1, X2)
and Y = (Y1, Y2) and the segments produced on both chro-
mosomes are interchanged, transforming X and Y in two new
chromosomes X ′ and Y ′. A translocation operation works with
the assumption that the four segments are not empty.

In the translocation scenario, two types of opera-
tions over segments of chromosomes are presented: Prefix-
Prefix and Prefix-Suffix. Given two signed chromosomes
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym)
in a genome, applying the translocation by Prefix-
Prefix ρ(X,Y, xi, yk), one obtains two new chromo-
somes X ′ = (x1, . . . , xi, yk+1, . . . , ym) and Y ′ =
(y1, . . . , yk, xi+1, . . . , xn). On the other hand, the transloca-
tion by Prefix-Suffix θ(X,Y, xi, yk) produces the new chro-
mosomes X ′ = (x1, . . . , xi,−yk, . . . ,−y1) and Y ′ =
(−ym, . . . ,−yk+1, xi+1, . . . , xn) (See Fig. 3).

Example: Consider the genome ~A = {X,Y, Z} with X =
(+1,+2,−7,+5), Y = (+4,+3) and Z = (+6,−8,+9). The
translocation ρ(X,Y,+2,+4) transforms ~A into the genome

~A′ = {(+1,+2,+3), (+4,−7,+5), Z}.

Fig. 3. Prefix-Prefix and Prefix-Suffix type translocations.

Applying the translocation θ(X,Z,+2,+6) to ~A, one
obtains the genome

~A′′ = {(+1,+2,−6), Y, (−9,+8,−7,+5)}.

For the unsigned case, translocation is defined as
follows. Consider two unsigned chromosomes X =
(x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym). A transloca-
tion by Prefix-Prefix ρ(X,Y, xi, yk) transforms X and Y
into two new chromosomes X ′ = (x1, . . . , xi, yk+1, . . . , ym)
and Y ′ = (y1, . . . , yk, xi+1, . . . , xn); whereas a translo-
cation by Prefix-Suffix θ(X,Y, xi, yk) transforms X and
Y into X ′ = (x1, . . . , xi, yk, . . . , y1) and Y ′ =
(ym, . . . , yk+1, xi+1, . . . , xn).

Example: Consider the unsigned genome A = {X,Y, Z},
with chromosomes X = (1, 2, 7, 5), Y = (4, 3) and Z =
(6, 8, 9). ρ = (X,Y, 2, 4) transforms A into

A′ = {(1, 2, 3), (4, 7, 5), Z}.

θ(X,Z, 2, 6) transform A into

A′′ = {(1, 2, 6), Y, (9, 8, 7, 5)}.

Consider a chromosome X = (x1, x2, ..., xk), the genes
x1 and −xk are called tails of X in the signed case; for the
unsigned case, the tails of X are x1 and xk. Two genomes are
called co-tails if their sets of tails are the same. The genomes
~B and ~C below are co-tails since they share the same set of
tails, that is {+1,−6,+7,−10}.

~B = {(+1,+2,−4,+3,+5,+6), (+7,−9,+8,+10)},

~C = {(+1,+2,+3,+4,+5,+6), (+7,+8,+9,+10)}.

Notice also that genomas ~A, ~A′ and ~A′′ as well as A,A′ and
A′′ of previous example are co-tails.

This property is essential, when we consider genome
rearrangement through translocations, because translocations
by Prefix-Prefix and Prefix-Suffix do not alter the set of tails
of a genome. So, in order to transform the genome A into B
by translocations the following conditions must be satisfied:
the number of chromosomes and genes of A and B must be
the same, and A and B must be co-tails.

In the rest of the paper, unless otherwise stated, we will
consider only unsigned genomes.
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E. Translocation distance

We are interested in studying the problem of sorting
genomes by translocations. The problem can be described as
follows: consider two unsigned genomes A and B with n
genes, where the genes of the genome B are in increasing
order and A and B are co-tails. Our goal is to find a sequence
δ1, δ2, . . . , δt of translocations that transform A into B, and t
is minimum; the number t is called the translocation distance
between A and B. For the signed case, the problem is defined
analogously with the genes of the genome B being positive
and in increasing order.

The complexity of the translocation distance problem is
related with the maximum decomposition into alternating
cycles of breakpoint graphs. Since there is only one possible
decomposition into alternating cycles of the breakpoint graph
of signed genomes, the translocation distance problem results
of polynomial complexity; however, for the unsigned case, the
problem is NP-hard as will be explained in the next section.

III. UNSIGNED TRANSLOCATION DISTANCE IS NP-HARD

The original proof of this fact is in [6]; here, we will
compile all necessary steps providing a self-contained proof.

A. Screenplay of the Proof

For a good understanding of the stages of the proof, a
screenplay will be presented containing all necessary steps that
were implicitly or explicitly used in [6]. Some problems should
be defined first.

k-cliques: check if the set of edges of a graph H can be
partitioned into cliques of size k. For k ≥ 3, k-cliques is known
to be an NP-complete problem.

MAX-ECD: consider an Eulerian graph H , the problem
consists in finding a maximum decomposition in cycles of H ,
i.e., a partition of the set of edges of H in a maximum number
of cycles.

MAX-ACD: given a breakpoint graph G(π) of a permutation
π, the problem consists in finding a maximum decomposition
in alternating cycles of G(π).

The proof is organized in the following steps (See Fig. 4):

• Initially, Section III-B demonstrates that the problem
of graph partitioning in cycles for k = 3 is an instance
of the MAX-ECD problem [7]; thus, MAX-ECD is an
NP-complete problem.

• Afterwards, Section III-C presents a polynomial re-
duction from MAX-ECD into MAX-ACD [8]; conse-
quently, MAX-ACD is an NP-hard problem;

• Finally, Section III-D polynomially reduces MAX-
ACD into the translocation distance problem [6]; thus,
the translocation distance problem is NP-hard.

B. k-cliques ⊆ MAX-ECD

In the early 1980’s Holyer proved that partitioning a graph
in k-cliques, for k ≥ 3 is an NP-complete problem [7]. For
k = 3 one wants to check if the edge set of the graph can

Fig. 4. Reductions for NP-hardness of unsigned translocation distance.

be partitioned into triangles. In this case, the graph can be
assumed Eulerian. Thus, the problem of finding a partition of
the set of edges of an Eulerian graph into triangles is NP-
complete. Furthermore, since the decomposition of a graph into
triangles gives the maximum Eulerian decomposition, one can
conclude that 3-cliques ⊆ MAX-ECD.

C. MAX-ECD �p MAX-ACD

Before presenting details of the polynomial reduction from
MAX-ECD to MAX-ACD proposed by Caprara in [8], some
definitions and properties must be given.

1) Breakpoint Graph G(π): Consider a permutation π =
(π1, . . . , πn) in Sn representing a genome constituted by only
one chromosome.

The breakpoint graph G(π) = 〈V,E = R ∪ B〉 of π is
constructed as follows: initially, add to π the elements π0 = 0
and πn+1 = n+ 1, and consider π′ = (0, 1, . . . , n+ 1). Each
node v ∈ V represents an element of π′.

The breakpoint graph G(π) is a bi-colored graph, where
the set of edges E is partitioned into two subsets: red (R)
and blue (B) edges. There is a red edge (πi, πi+1) whenever
|πi−πi+1| 6= 1, for 0 ≤ i ≤ n, i.e., there is a red edge between
consecutive vertices πi and πi+1 that have non consecutive
labels. In this case, the pair πi, πi+1 is called a breakpoint
of G(π). There is a blue edge between vertices labelled with
i and i + 1, 1 ≤ i ≤ n, whenever i and i + 1 are not in
consecutive positions in π. Fig. 5 illustrates this notion.

Fig. 5. Breakpoint graph G(π) associated to genome π = (2, 4, 1, 3), where
red and blue edges are represented respectively as solid and dashed lines.
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Theorem 1 (Properties of G(π) - Th. 4 in [8]). A bi-colored
graph G = 〈V,R∪B〉 is the breakpoint graph of some genome
π iff

• Each connected component of the subgraphs G(R) and
G(B), induced by the red and blue edges resp., is a
simple path;

• Each node i ∈ V has the same degree (0, 1 or 2) in
G(R) and G(B);

• There are no edges in G(R) and G(B) connecting the
same vertices.

Sufficiency follows from definition of breakpoint graphs.
Necessity requires construction of a permutation π through
Hamiltonian matchings [8].

An alternating cycle of G(π), is a sequence of edges
r1, b1, r2, b2, . . . , rm, bm, where ri ∈ R, bi ∈ B for i =
1, . . . ,m; ri and bj have a common node for i = j = 1, . . . ,m
and for i = j + 1, j = 1, . . . ,m (where rm+1 = r1); and
ri 6= rj , bi 6= bj for 1 ≤ i < j ≤ m.

A decomposition in alternating cycles of G(π) is a collec-
tion of alternating disjoint edge cycles, such that each edge
of G(π) is contained in exactly one cycle of the collection.
Thus, MAX-ACD is an optimization problem that consists in
searching a maximum decomposition of G(π) in alternating
cycles. For instance see the MAX-ACD in Fig. 6.

Fig. 6. MAX-ACD of size 2 for G(π) for π = (2, 4, 1, 3), where the solid
lines represent one cycle, and the dashed lines represent another cycle.

2) MAX-ACD is NP-Hard: The proof is based on a
polynomial reduction from MAX-ECD to MAX-ACD. Given
an Eulerian graph H = 〈W,E〉 one can built a bi-colored
graph G in polynomial time, such that there exists a one-
to-one correspondence between cycles of H and alternating
cycles of G. The graph G is built replacing each node v of
H by a bi-colored subgraph G(v), containing d bottom nodes
among other vertices, where d is the degree of v (see Fig.
7). All connections between the original vertices of H remain
represented by red connections between different base nodes
of the bi-colored subgraphs G(v) ∈ G. To complete the proof,
the graph G must satisfy the characterization of Theorem 1.

The internal structure of each subgraph G(v) ∈ G has d
base nodes and m levels, abbreviated as G(d,m). Let s := d

2

and r := dd4e. Each level l, l = 1, . . . ,m contains 2s+1 nodes;
s+1 of them are top-level nodes, denoted by ql1, . . . , q

l
s+1, and

the other s are lower-level nodes, denoted by pl1, . . . , p
l
s. Top-

level nodes ql1, . . . , q
l
s+1 are connected to lower-level nodes

pl1, . . . , p
l
s by d red edges (qli, p

l
i), (q

l
i+1, p

l
i), for i = 1, . . . , s.

Also, for l = 1, . . . ,m−1 the top-level nodes ql1, . . . , q
l
s+1

are connected to the lower-level nodes of the level l+ 1 by d
blue edges (pl+1

i , qli), (p
l+1
i , qli+1), for i = 1, . . . , s.

Fig. 7. (a) The Eulerian graph H . (b) The bi-colored graph G(π) constructed
from H .

Finally, the upper nodes of the last level m are connected
to each other by s blue edges (qmi , q

m
i+1), for i = 1, . . . , s,

and the d bottom nodes, denoted by b1, . . . , bd, are connected
to the lower-level nodes of the first level by d blue edges
(b2i−1, p1i ), (b2i, p

1
i ), for i = 1, . . . , s (see Fig. 8).

Fig. 8. Subgraph G(d,m) for d = 8 and m = 2, where red edges are
represented as solid lines, and blue edges are represented as dashed lines.

Observe that all nodes of G(d,m) except bottom nodes
have the same number of red and blue incident edges. Given
two nodes of G(d,m) an alternating path between such nodes
is a path where the colors of the edges are alternate. Given
any two different bottom nodes bi and bj , it is always possible
to build an alternating path between bi and bj , whenever we
have enough number of levels in G(d,m). Indeed, by Theorem
5 in [8], the edge set of G(d,m) can be decomposed into s
alternating paths, connecting any selection of different pairs of
bottom nodes, iff m ≥ r(s− 1) + 1. Thus, one can guarantee
that it is possible from a bottom node bi achieve a different
bottom node bj by an alternating path and then connect bj to
another subgraph belonging to G by a red edge (see Fig. 7).
w Thus, if there is a cycle in H then it can be represented by
an alternating cycle in G and vice-versa; consequently there
is a correspondence between a cycle decomposition of H and
G. The Fig. 9 illustrates this correspondence.

To conclude, one can observe that G satisfies the conditions
of the Theorem 1. Consequently, G is a breakpoint graph. The
reduction is done in polynomial time choosing m = r(s−1)+
1. Thus, we have a polynomial time reduction from MAX-ECD
to MAX-ACD, and MAX-ACD is NP-hard.

D. MAX-ACD �p UTD

In this section, a polynomial reduction from MAX-ACD to
UTD is presented following the presentation in [6]. This allows
one concluding that the latter problem is NP-hard.
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Fig. 9. (a) Eulerian graph H containing two cycles. (b) The bi-colored graph
G, representing the same two cycles of H , where one cycle is represented
with solid lines, and the other with dashed lines.

Let X and Y be two unsigned chromosomes. Without loss
of generality, let X = (g1, g2, . . . gn) and Y = (1, 2, . . . , n),
where {g1, g2, . . . , gn} = {1, 2, . . . , n} and g1 = 1, gn = n.
From X and Y , one can build two genomes A = {X1, X2}
and B = {Y1, Y2} as will be described. Also, consider an
integer d that will be used to control the amount of short
cycles in the decomposition of Gu(A,B); this number is
justified by Lemma 2. The chromosome X1 of the genome
A is constructed by inserting n − 1 new genes between two
adjacent genes in X as follows:

X1 = (1, t1,1, g2, t1,2, . . . , gn−1, t1,n−1, n)

where, t1,k = 3n− 2 + k, 1 ≤ k ≤ n− 1.
X2 contains two types of new genes, t2,l = n + l, 1 ≤ l ≤
2(n− 1) and si = 4n− 3 + i, 1 ≤ i ≤ (n− 2)d.

X2 = (t2,1, t2,2, s1, s2, . . . , sd,

t2,3, t2,4, sd+1, sd+2, . . . , s2d,

...
t2,2(n−2)−1, t2,2(n−2), s(n−3)d+1, . . . , s(n−2)d,

t2,2(n−1)−1, t2,2(n−1))

To construct the genome B = {Y1, Y2}, consider the same
integers t1,k, t2,l and si, 1 ≤ k ≤ n − 1, 1 ≤ l ≤ 2(n −
1), 1 ≤ i ≤ (n − 2)d, as calculated in A. The chromosome
Y1 = Y = (1, 2, . . . , n) and Y2 is built from X2 inserting t1,k
between t2,2k−1 and t2,2k in X2.

Y2 = (t2,1, t1,1, t2,2, s1, s2, . . . , sd,

t2,3, t1,2, t2,4, sd+1, . . . , s2d,

...
t2,2(n−2)−1, t1,n−2, t2,2(n−2), s(n−3)d+1, . . . , s(n−2)d,

t2,2(n−1)−1, t1,n−1, t2,2(n−1))

At the end of the construction, each one of the genomes
A and B has a total number of 4n− 3 + (n− 2)d genes.

Example. Let X = (1, 3, 4, 2, 5) and Y = (1, 2, 3, 4, 5); Fig.
10 (a) illustrates the graph Gu(X,Y ). Consider d = 4. So, the
genomes A and B are:

A = {X1, X2}, where
X1 = (1, 14, 3, 15, 4, 16, 2, 17, 5) and
X2 = (6, 7, 18, 19, 20, 21, 8, 9, 22, 23, 24,

25, 10, 11, 26, 27, 28, 29, 12, 13)

and
B = {Y1, Y2}, where
Y1 = (1, 2, 3, 4, 5) and
Y2 = (6, 14, 7, 18, 19, 20, 21, 8, 15, 9, 22, 23, 24,

25, 10, 16, 11, 26, 27, 28, 29, 12, 17, 13)

The graph Gu(A,B) is shown in Fig. 10 (b). The Lemmas 2

Fig. 10. Breakpoint graphs (a) Gu(X,Y ) is a graph with red (solid lines)
and blue (dashed lines) edges. (b) Gu(A,B) is a graph with black (solid
lines) and gray (dashed lines) edges.

and 3 establish the relationship between a maximum decompo-
sition into alternating cycles of Gu(X,Y ) and the translocation
distance between genomes A and B.

Lemma 2 (Lemma 4 in [6]). Assume d ≥ n − 1. There is a
decomposition of Gu(X,Y ) into J alternating cycles iff there
is a decomposition of Gu(A,B) into at least (n−2)(d+1)+J
alternating cycles.

A brief idea of the proof of this relation given in [6] is
described in the sequel.

Sufficiency: assume that there is a decomposition M of
Gu(X,Y ) into J alternating cycles. The idea consists in
associating univocally to each cycle C ∈ M a cycle C ′ in
Gu(A,B), and with the remaining edges of Gu(A,B) building
(n− 2)(d+ 1) cycles.

For each cycle C ∈M , C can be represented as a list C =
u1, u2, . . . , u2k−1, u2k, where (u2i−1, u2i) is a black edge and
(u2i, u2i+1) is a gray edge, 1 ≤ i ≤ k and u2k+1 = u1. Notice
that if u2i−1 = gj then u2i = gj+1 or u2i = gj−1.

A new cycle C ′ in Gu(A,B) can be obtained replacing
each black edge (u2i−i, u2i) of C by the alternating path
P2i−i,2i , where,

P2i−i,2i = gj , t1,j , t2,2j−1, t2,2j , t1,j , gj+1

if u2i−1 = gj , u2i = gj+1;

P2i−i,2i = gj , t1,j−1, t2,2j−3, t2,2j−2, t1,j−1, gj−1
if u2i−1 = gj , u2i = gj−1.

So, to each cycle C ∈ M a long cycle C ′ of
Gu(A,B) can be associated univocally (see Fig. 11).
The only edges of Gu(A,B) not used to build the
J long cycles are the d + 1 black and gray edges
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Fig. 11. Representing the same two cycles of Gu(X,Y ) in two long cycles
into Gu(A,B). The alternating cycles are distinguished by dashed and solid
thick lines in Gu(X,Y ) and Gu(A,B) respectively.

(t2,2i, s(i−1)d+1), . . . , (sid−1, sid), (sid, t2,2i+1), whose ver-
tices belong to X2 and Y2, for i ∈ {1, . . . , n − 2}. Such
edges form (n − 2)(d + 1) short cycles. Consequently, the
decomposition M of Gu(X,Y ) into J alternating cycles
induces a decomposition of Gu(A,B) into (n− 2)(d+1)+J
alternating cycles.

Necessity: consider M ′ a set of (n−2)(d+1)+J alternating
cycles forming a decomposition of Gu(A,B). Note that, only
the edges (t2,2i, s(i−1)d+1), . . . , (sid−1, sid), (sid, t2,2i+1), for
i ∈ {1, . . . , n− 2}, can form short cycles; consequently, there
are at most (n−2)(d+1) short cycles in M ′. The idea consists
in showing that it is always possible to build a decomposition
of Gu(A,B) with (n−2)(d+1) short cycles; and, to the other
J long cycles of Gu(A,B) one can associate a decomposition
of J alternating cycles of Gu(X,Y ). For more details see [6].

The Lemma 3 below provides an upper bound for the
translocation distance between two unsigned genomes A and
B, since the breakpoint graph of A and B can be decomposed
into (n− 2)(d+ 1) + J alternating cycles.

Lemma 3 (Lemma 5 in [6]). There is a decomposition of
Gu(A,B) into (n − 2)(d + 1) + J alternating cycles iff
d(A,B) ≤ 3n− 3− J .

By Lemmas 2 and 3, there is a decomposition into J
alternating cycles of Gu(X,Y ), if and only if, the translocation
distance between A and B is at most 3n− 3− J .

Consider an instance of MAX-ACD containing n genes
and d = n − 1. So, the corresponding instance of unsigned
translocation distance has 4n−3+(n−2).(n−1) = n2+n−1
genes. Consequently, there is a polynomial reduction from
MAX-ACD to Unsigned translocation distance problem and
the latter is NP-hard.

IV. 1.5+ε-APPROXIMATE SOLUTION FOR UTD

In the search for approximate solutions for the translocation
distance problem between unsigned genomes, Zhu and Wang
[6] noted that given an unsigned genome A (and the identity
genome B), the minimum number of translocations necessary

to order the signed versions of A can have different values,
depending on the signs attributed to their genes. See a simple
example of this fact in Fig. 12. Thus, the solutions known in the
literature to the unsigned case exploit this statement, applying
complex heuristics, in order to acquire good approximate
solutions. Here details of our implementation of the algorithm

(a) (b)

Fig. 12. The dashed lines highlight regions of inversions
of a chromosome and the solid lines of translocations. (a)
Genomes A = {(+1,+3,+2,+4), (+5,−6,+7,+8)} and
B = {(+1,+2,+3,+4), (+5,+6,+7,+8)}. The translocation distance is
5. (b) Genomes A = {(+1,+3,+2,+4), (+5,+6,+7,+8)} and same B.
The translocation distance is 4.

introduced in [13] are given. This algorithm provides approx-
imate solutions of ratio 1.5+ε for the unsigned translocation
distance problem. Solutions given by this implementation are
used as a quality control for the solutions provided by the
proposed GA (see Algorithm 1). The strategy of this approx-
imation algorithm consists in computing the decomposition
in cycles of Gu(A,B), and from this decomposition attribute
signs for the genes in A obtaining a signed ~A; then, we used
the algorithm proposed in [5] for computing the translocation
distance of ~A.

A. Heuristics Used in the Approximation Algorithm

In the search for a decomposition in cycles of Gu(A,B),
all 1-cycles are maintained, where 1-cycles are formed by a
black and a gray edge, such that appropriate signs are attributed
to the genes involved in order to form an 1-cycle.

After obtaining the maximum number of 1-cycles, one
seeks the maximum number of 2-cycles in polynomial time.
A match graph FAB of the breakpoint graph Gu(A,B) is
constructed as follows:
1 for each black edge in Gu(A,B) with at least one unsigned
vertex, create a vertex in FAB ;

2 for each two vertices in FAB , an edge is created connecting
them if the two black edges in Gu(A,B) form a 2-cycle.

Let V and E be the set vertices and edges of FAB

respectively. A maximum match of FAB is a set M ⊆ E
such that: ∀v ∈ V, v has at most one edge incident in M .

Each edge in M represents a 2-cycle in Gu(A,B). A 2-
cycle in M is isolated if it does not share any edge with any
other 2-cycle. Otherwise, the 2-cycle is related. Since, a 2-
cycle has two gray edges, it relates at most two 2-cycles.

A related component U consists of related 2-cycles
c1, c2, · · · , ck, where ci is related with ci−1 (2 ≤ i ≤ k),
and each 2-cycle is not related to any other 2-cycle out of U .
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Also, a related component involves at most two chromosomes
and can be only of one of the four types shown in Fig. 13.

(a)

(b)

(c) (d)

Fig. 13. The four types of related components containing 2-cycles. (a) e (b)
The component is only at one chromosome. (c) e (d) Two chromosomes are
involved in the component.

After the components are built, the focus will be the
isolated components. From isolated 2-cycles it is possible to
identify a special type of 2-cycle, called simple minSP (here,
minSP coincides with the notion defined in Section II) or in the
short form SMSP, those 2-cycles appear with their gray edges
at the extremity twisted, and with all internal cycles with their
black edges involved in 1-cycles. Let Is = xi, xi+1, · · · , xj
an SMSP. If there exists a gray edge (xi−1, xj) or (xi, xj+1)
in Gu(A,B), one can create a gray edge (r(xi−1), r(xj))
or (l(xi), l(xj+1)), transforming Is into a removable SMSP
(RSMSP). The RSMSPs are used to decrease the translocation
distance by changing the signs of their end genes. For more
details, see [13] and [4].

B. Analysis of the implementation

The Algorithm 1 is a high level abstraction of the im-
plementation of the 1.5+ε algorithm that is also available at
www.mat.unb.br/∼ayala/publications.html as part
of the whole development. This algorithm was implemented
using the C language. Here, we present an overview about the
running time complexity, showing that the implementation has
the same complexity given in [13]. Since, the Algorithm 1
produces as output a signed genome, the approximate solution
of ratio 1.5 + ε is obtained by applying the algorithm in [5]
as an auxiliary procedure.

Let n be the size of the genome A. At line 1, the breakpoint
graph Gu(A,B) is built using adjacency lists in time O(n2).

Both the processes of computing the 1-cycles at line 2, and
building the graph FAB at line 3 have time complexity O(n)
each one, since it is necessary to process n genes in A.

At line 4, the boost library was used for computing the
maximum matching graph M of FAB , this well-known library
is implemented in C++ and is available at http://www.boost.
org/. Computation of the matching graph has time complexity
O(V 2) with V representing the number of vertices in FAB .

At line 5, the time complexity of finding isolated 2-cycles
and 2-cycles in related components of M is O(m2), since it is
necessary to compare if two cycles share the same gray edges
in M , with m being the number of vertices of M .

At line 6, the procedure to identify the RMSPs has time
complexity O(mp), with p representing the number of genes
of each isolated cycle.

At lines 7 and 8, the time complexity of distributing
appropriate signs for both 2-cycles either isolated or related
is O(m2).

At line 9, removing RMSPs is performed in O(m), this
procedure is very simple, because reverses only the extreme
genes of each RMSP.

At line 10, getting the signs distributed for the 2-cycles in
the previous steps and assigning it to the genes of A has time
complexity O(n).

At line 11, verifying if there exist genes without signs in
A has time complexity O(n).

At line 12, distributing arbitrarily signs to the genes of A
has time complexity O(n).

Thus, if one looks only to the procedure with highest
complexity, that is the procedure that computes the graph
Gu(A,B) and has quadratic complexity, the implementation
runs as proposed in ([12], [13]).

Algorithm 1: 1.5+ε approximate algorithm for UTD
Input: Unsigned genomes A and B (as identity

genome)
Output: Signed genome ~A

1 Build the breakpoint graph Gu(A,B);
2 Compute all possible 1-cycles in A;
3 Build the graph FAB ;
4 Compute the maximum matching graph M of FAB ;
5 Compute isolated 2-cycles and related components in
M ;

6 Build all possible RMSPs of isolated 2-cycles;
7 Distribute appropriate signs to isolated 2-cycles;
8 Distribute appropriate signs to related components;
9 Remove all RMSPs;

10 Get the signs distributed for the 2-cycles in the previous
steps and put in genes of A;

11 if there exists genes without signs in A then
12 Distribute arbitrarily signs to genes of A;

V. A GENETIC ALGORITHM FOR UTD

Initially, necessary concepts about genetic algorithms are
given. A GA is a searching technique used to solve optimiza-
tion problems, that was introduced in 1975 by Holland in
his book ”Adaptation in natural and artificial systems”. Such
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technique works with the hypothesis that the genetic informa-
tion of a specific population contains a possible solution. This
solution, possibly is not contained in a single individual. Thus,
through techniques of genetic combination, new individuals
can be obtained that improve the solution to the proposed
problem, and after some generations the individuals converge
to a good solution [16].

In order to model a solution based in natural evolution, GAs
emulate the evolutionary process that is done in the nature. The
following concepts are necessary in order to understand GA:

Individual: an individual represents a unique solution, within
a scenario of possible solutions.

Population: a population is a set of individuals constituting
a scenario that contains a part of the search space, such
population may contain potential solutions.

Fitness: it is used to measure how good an individual is in the
population.

The process or cycle of reproduction is the central part
of GAs, since during this process new individuals are created
potentially with incremental quality. The reproduction cycle
consist in 4 steps:

Selection: choose two parents to perform the reproduction. The
objective is to find good individuals hoping the generation of
descendants with better fitness.

Crossover: apply the crossover over the selected parents
producing two news descendants. In the context of our problem
this operation is performed by swapping the elements from a
random point to the end of the string of two parents solutions.

Mutation: after the crossover, some of the individuals are
subjected to mutation. The mutation has the roles of recovering
the lost genetic material and also maintaining the genetic
diversity. In the context of our problem this operation is
performed by simply swapping the signs of a random element
of an individual.

Replacement: consists in the replacement of the individuals
with the worst fitness in the old population.

A. Fitness function in the GA for UTD

The purpose of the fitness in our algorithm is to calculate
the translocation distance between the signed genome ~A and
the identity genome, which is the genome with all its elements
positive and sorted in increasing order. Thus, we can rank the
best signed versions of the unsigned genome A according to
this fitness. The linear algorithm proposed by Bergeron et al
in [5] is used to calculate the translocation distance between
two signed genomes. Originally, this linear algorithm was
implemented in Java as a part of the system UniMoG [10],
but we reimplemented it in the C language.

Finding an optimal solution for a given unsigned genome
A is a hard task, since, the search space for such unsigned
genome consists of 2n signed genomes, that are all possible
signed versions of A. Such signed genomes can be sorted in
linear time. Additionally, it is easy to note that solutions that
solve any signed genome in the search space also solve the
initial unsigned genome, and of course, that all these solutions
will require a number of translocations greater than or equal

to the translocation distance of the given unsigned genome A.
This fact will be used to guide the proposed GA.

B. Description of the GA

The GA works as follows. Initially, a random population
of signed genomes is generated based on the unsigned genome
input. After that, for each generation the reproduction is
performed as follows: Select two individuals of the population,
such individuals are part of the best current solutions for which
crossover and mutation operations are applied producing two
new individuals. Then, the new individuals are incorporated in
the current population. The GA finishes after all the genera-
tions have been completed, the number of generations depends
on the size of the input genome.

The pseudo-code of our proposed GA is shown in Algo-
rithm 2.

Algorithm 2: GA for Calculating UTD
Input: Unsigned genomes A and B (as identity

genome)
Output: Number of translocations to sort genome A

1 Generate the initial population of signed genomes;
2 Compute fitness of the initial population;
3 for i = 1 to Length(A) do
4 Perform the selection and save the best solution

found;
5 Apply the crossover operator;
6 Apply the mutation operator;
7 Compute the fitness of the current population;
8 Perform replacement of the worst individuals;

Let n be the size of the genome A. The initial population
size is defined as n log n. Each individual in the population
is generated from A in linear time, randomly assigning either
a positive or negative sign to each gene. This step has time
complexity of O(n2 log n).

Since, for a single individual the fitness is computed in
linear time, the process of computing the fitness value for all
population has time complexity O(n2 log n).

In the Selection step, the counting sort algorithm was used
for increasingly sorting the population by their fitness values.
This process has time complexity O(n + n log n), with the
fitness value of each individual in the interval from 1 to n,
and with population size being n log n. Thus, the complexity
of this step is O(n log n).

In the crossover step, the best individuals classified during
the selection step are chosen to be the parents. For each
pair of parents, the crossover was applied by interchanging
the elements at the right side of a random point from one
individual to the other. Clearly this takes linear time. Thus,
the running time for executing the crossover over a maximum
of n log n individuals is O(n2 log n).

In the mutation step, this operator is applied to each new
individual produced by the crossover. For each element of one
individual, a check is made to verify whether to apply or not
the mutation over a single element, this clearly takes linear
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time (O(n)). The total time taken by the mutation applied
over a maximum of n log n individuals is O(n2 log n).

In the replacement step, the replacement of each individual
takes linear time, since all its n elements must be copied.
Thus, the total time taken by the replacement of a maximum
of n log n individuals is O(n2 log n).

Finally, the genetic algorithm finishes after n generations
and its total time complexity is O(n3 log n).

VI. EXPERIMENTS AND RESULTS

The GA and the 1.5+ε-approximation algorithm were im-
plemented in C and tested on OS X and Ubuntu Linux
platforms with Intel core I5 processors. The code is available at
www.mat.unb.br/∼ayala/publications.html. For the
experiments were used the same platforms.

In order to validate the proposed GA, several tests were per-
formed. The tests were done for randomly generated genomes.
These genomes were created as follows: Generate an identity
genome containing n genes and N chromosomes. Then, over
this identity genome apply a fixed number of random reversals
and translocations. The pseudocode of this procedure is shown
in Algorithm 3.

Algorithm 3: Construction of synthetic genomes
Input: Number of genes n with N chromosomes
Output: A synthetic genome A

1 Generate an identity genome A with n genes and N
chromosomes;

2 j ← 0;
3 while j ≤ n do
4 Choose randomly a chromosome C of A;
5 Select randomly an interval in C;
6 Apply a reversal over this interval;
7 Choose randomly two chromosomes C and C ′ of A;
8 Apply a Prefix-Prefix translocation between

segments of C and C ′;
9 j ← j + 1;

In order to obtain good quality solutions, adjustments were
performed in the parameters of the genetic operators. The fine-
tuning was experimentally performed providing better solu-
tions regarding GA solutions without adjustments in these pa-
rameters. The experiment was performed as follows: The GA
was executed ten times for each genome contained in a group
of hundred elements, with each group containing genomes with
n genes, for n ∈ {20, 50, 100, 150}, and with 25% of each
group having N chromosomes, with N ∈ {2, 3, 4, 5}. For each
parameter to be adjusted its value was varied over a scenario
of possible good values, and estimated values were fixed for
the other parameters.

At the end of the experiment the parameters that provided
the best results for the GA were taken. Those parameters are
the following: single crossover point with probability of 90%,
mutation probability of 2%, selection applied over 80% of the
current population, and replacement applied over the 70% of
the worst individuals of the current population.

TABLE I. AVERAGE RESULTS OF THE GA AND THE
1.5+ε-APPROXIMATION ALGORITHM FOR 2 AND 3 CHROMOSOMES

2 chromosomes 3 chromosomes
n GA 1.5+ε-Approx. GA 1.5+ε-Approx.
10 3.394 3.540 2.750 2.900
20 9.738 10.770 9.244 10.360
30 16.513 18.690 15.891 18.110
40 23.600 27.080 22.442 25.730
50 29.9810 34.580 29.662 34.170
60 37.183 42.910 36.639 42.010
70 44.907 51.840 43.230 49.930
80 51.869 59.620 50.604 58.490
90 58.213 66.960 57.715 66.620

100 66.287 76.300 65.448 75.320
110 74.534 85.940 72.940 83.710
120 80.587 92.400 80.064 91.710
130 89.164 102.020 86.838 99.590
140 96.252 110.070 94.599 108.210
150 103.510 118.380 102.106 116.350

TABLE II. AVERAGE RESULTS OF THE GA AND THE
1.5+ε-APPROXIMATION ALGORITHM FOR 4 AND 5 CHROMOSOMES

4 chromosomes 5 chromosomes
n GA 1.5+ε-Approx. GA 1.5+ε-Approx.

10 1.670 1.740 0.980 0.980
20 8.442 9.170 7.320 7.890
30 14.861 16.710 13.650 15.330
40 21.058 23.860 20.078 22.420
50 27.545 31.450 26.334 30.020
60 34.314 39.380 32.111 36.880
70 41.488 47.640 38.935 44.430
80 47.589 54.440 45.134 51.490
90 55.020 63.110 52.609 60.310
100 61.539 70.830 58.815 67.260
110 68.687 78.460 65.027 74.450
120 75.462 86.140 72.028 82.270
130 82.452 94.020 78.792 89.680
140 89.948 102.750 86.133 98.230
150 97.686 111.080 92.506 105.330

Experiments were performed with the selected parame-
ters for calculating the translocation distances for the GA
and the 1.5+ε-approximation algorithm. For this purpose,
genomes were generated using the Algorithm 3 with n genes,
for n ∈ {10, 20, · · · , 150}, and with N chromosomes, for
N ∈ {2, 3, 4, 5}. For hundred genomes of length (n,N), the
average of the results for the 1.5+ε-approximation algorithm
was calculated. The same packages of hundred genomes used
in the approximation algorithm were used to calculate the
average in the GA. It is worth mentioning that for each genome
of length (n,N) the GA was executed ten times and then, the
average of the ten obtained results was calculated as the result
for each genome of length (n,N).

The results (average translocation distances) of the exper-
iment are shown in the Tables I and II. Also, experiments for
calculating the running time (in seconds) for one execution
were performed for both algorithms and the results are shown
in the Tables III and IV.

VII. DISCUSSION

A few considerations are necessary before discussing the
results. On the way to build synthetic genomes, instead of
applying just prefix-prefix translocations between the chromo-
somes, reversals over the chromosomes were also applied. By
including reversals it was possible to obtain more complex
instances of the problem. Prefix-suffix translocations were not
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TABLE III. RUNNING TIME (IN SECONDS) OF THE GA AND THE
1.5+ε-APPROXIMATION ALGORITHM FOR 2 AND 3 CHROMOSOMES

2 chromosomes 3 chromosomes
n GA 1.5+ε-Approx. GA 1.5+ε-Approx.
10 0.008 0.010 0.009 0.010
20 0.030 0.010 0.032 0.011
30 0.082 0.010 0.091 0.012
40 0.184 0.009 0.199 0.011
50 0.356 0.010 0.377 0.010
60 0.605 0.010 0.646 0.019
70 0.962 0.010 1.029 0.010
80 1.427 0.010 1.535 0.011
90 2.076 0.010 2.186 0.010

100 2.877 0.010 3.016 0.010
110 3.839 0.010 4.032 0.011
120 5.011 0.011 5.246 0.010
130 6.498 0.011 6.811 0.011
140 8.123 0.011 8.519 0.011
150 10.071 0.011 10.489 0.011

TABLE IV. RUNNING TIME (IN SECONDS) OF THE GA AND THE
1.5+ε-APPROXIMATION ALGORITHM FOR 4 AND 5 CHROMOSOMES

4 chromosomes 5 chromosomes
n GA 1.5+ε-Approx. GA 1.5+ε-Approx.
10 0.011 0.013 0.012 0.012
20 0.037 0.015 0.042 0.011
30 0.101 0.014 0.110 0.011
40 0.217 0.011 0.234 0.011
50 0.405 0.010 0.434 0.010
60 0.685 0.009 0.737 0.010
70 1.082 0.010. 1.134 0.010
80 1.626 0.010 1.687 0.010
90 2.322 0.010 2.415 0.010

100 3.170 0.010 3.322 0.010
110 4.258 0.010 4.413 0.010
120 5.479 0.011 5.756 0.010
130 7.091 0.011 7.384 0.011
140 8.899 0.011 9.273 0.011
150 10.975 0.011 11.421 0.011

considered because they are analogous to apply a reversal and
a prefix-prefix translocations, which is done by Algorithm 3.

It is important to emphasize that the algorithm proposed
in [5], which is used as fitness function, has already been
implemented in Java by their authors as a contribution of
Jens Stoye. This implementation was translated into C in order
to include it in the current work. Several test were performed
to validate the results of this implementation.

There is a little variation in the running time of the 1.5+ε
approximation algorithm even for genomes of length 150. This
is explained because the steps of the algorithm are relatively
simple, since the solutions of the approximation algorithm are
based in the calculation of 2-cycles and the randomly generated
inputs have a few number of 2-cycles. So, the execution of this
algorithm is always fast.

In Tables III and IV can be observed that when the
number of genes increases, the GA running time grows “as
expected” (from the complexity analysis that gave O(n3 log n)
for the computation of inputs of length n). This can be clearly
observed in the Fig 14, for inputs with 2 chromosomes. But
also, the running time grows when the number of chromo-
somes increases. Indeed, this is explained since having more
chromosomes implies more possibilities to apply prefix-prefix
and prefix-suffix translocations over different pairs of them.
Although this, it is necessary to stress here that the size of
the population is not proportional to the size of the search
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Fig. 14. Running time of the GA for different input length

space for genomes of different size as usual in combinatorics
of permutations (n log n versus n!).

From Tables I and II, one can conclude that the GA
computes better results on average than those obtained by the
1.5+ε-approximation algorithm. Also, it can be observed that
for permutations of length greater than or equal to 50, the GA
computes better solutions: indeed, the inputs are sorted with a
number of translocations that are approximately at least 12%
less than those computed by the approximation algorithm.

As can be seen in the Tables III and IV the running
time of the GA is, as expected, greater when compared with
the running time of the approximation algorithm and this
difference is higher for larger inputs.
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Fig. 15. Trade-off between the running time of the GA and the relative
difference of the GA

Finally, the relative difference of the GA was calculated
for measuring the improvement of the GA over the 1.5+ε
approximation algorithm. The Fig. 15 shows the trade-off
between the running time and the relative difference of the
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GA for inputs with 2 chromosomes (the data was taken from
Table I and II), one has similar results for inputs with 3, 4, and
5 chromosomes. In this figure it can be observed that when
the time increases also the relative difference increases until
it remains in the interval from 0.12 to 0.14. These values can
be interpreted in the following way: as the GA running time
increases the results of the GA are 12% to 14% better than
those computed by the 1.5+ε approximation algorithm.

VIII. CONCLUSIONS AND FUTURE WORK

In the search for good solutions for the NP-hard problem
of translocation distance for unsigned genomes, a GA was
proposed in this paper. This GA acts on a population of signed
genomes generated from a given unsigned genome, and after
each generation the population evolves to the signed genomes
with the best translocation distance. Indeed, the distinguishing
feature of our GA is that it uses as (linearly computable) fitness
function the translocation distance of signed genomes.

Experiments showed that results obtained by the GA out-
perform those obtained by the 1.5+ε-approximation algorithm.
Regarding running time, the 1.5+ε-approximation algorithm,
as expected, is faster than the GA. However this difference
is tolerable, since, the experiments with the GA have running
time of approximately 10 seconds for genomes with 150 genes.

As an immediate further step we will perform experiments
with data generated from the GeneBank sequence database.
This data would be generated by assigning an integer number
to each gene of a real genome; these integer numbers are
mapped from an identity genome with the same genes. Also, as
future work we are planning to improve our GA by including
other useful heuristics as done for other GA approaches that
deal with reversal distance. This will include memetic GA
approaches as in [17] and parallel GA approaches as in [18]
with the aim of improving the quality of the solutions while
the running time is reduced. Also, it would be of great interest
performing experiments with opposition based learning with
the aim of exploring the search space using opposite solutions
[19]. Work in progress proposes improvements which include
memetic and opposition-based approaches [20].
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