
Cooperative Live Coding as an instructional model

Antonio Deusany de Carvalho Junior
Instituto de Matemática e Estatı́stica

Universidade de São Paulo
dj@ime.usp.br

Abstract—The advances on technologies have provided many
tools that inspired new instructional models. Learners and in-
structors are experiencing a diverse environment where everyone
can participate from anywhere in the world and share the same
learning platforms. Although we already have some manuals,
tutorials, and also MOOCs that can be useful for people who
wants to learn Computer Music languages, the musical interac-
tion is not offered in these solutions. In this paper we present
an instructional model for computer music and live coding based
on a cooperative live coding environment where participants can
teach and learn through distributed pair programming. We also
discuss the fundamental ideas and the tool used on this work
during the first experiments.

I. INTRODUCTION

New instructional models have been provided by the ad-
vances on technologies and they are becoming popular even
without a long evaluation regarding their advantages. Most
of them are web based and can be accessed at any time by
thousand of students through the Internet. This structure for
instructional model takes advantage of the Internet as it is
and these models requires a basic setup to some extent. From
this point of view, the Internet permits the dissemination of
hypermedia to the whole society through the use of digital
technologies for information and communication [1].

The proposal of an instructional model self-contained on
the Internet also rises from the interaction or interactivity
aspects behind the model. One can say that the interaction
implies the transmission of information in unidirectional point
of view, while the interactivity rises from the two-dimensional
participation of the learner [2], or that the interactivity idea
is to focus on the observed object that is modified from time
to time [3]. Furthermore, the interactivity also includes many
features that permits participants to modify and intermediate
between the information received and the resultant knowledge.

In this work we are going to present a new instructional
model for computer music and live coding based on a tool for
cooperative live coding that provides an online environment
with many ways of interactivity. We are also opening a discus-
sion about cooperation and collaboration practices throughout
the use of this tool, initially proposed for collaborative live
coding by the authors. Even though cooperation and collab-
oration terms may be interchangeable used, we will consider
that the cooperation does not imply mutual benefit, and that
a collaboration assumes contribution of all participants with
mutual goals [4].

The next sections include a discussion about the advantages
of new instructional models that involve online systems. We
will present how users can learn cooperatively and which

TABLE I. SITES WITH MOOCS

Name Website

edX https://www.edx.org

Coursera https://www.coursera.org

NovoEd https://novoed.com

Udacity urlhttps://www.udacity.com

MiriadaX https://www.miriadax.net

Futurelearn http://futurelearn.com

OpenUpEd http://openuped.eu

P2PU https://p2pu.org

UoPeople http://uopeople.edu

environments can be used to provide online interaction. The
tool created by the authors is also presented, and we will
discuss the advantages of its use for teaching computer music
languages with musical interaction.

II. ONLINE INSTRUCTIONAL MODELS

An instructional model is a set of instructions or directions
that provide a way to acquire some knowledge, improve
capabilities, or extend the practice. Although we have a variety
of instructional models available for classroom, in the past two
decades many technologies became available and inspired new
instructional models.

A new contemporary instructional model is the Massive
Open Online Courses (MOOCs). This model offer online
courses that can be attended by thousand of people at the same
time. The systems often offer syllabus, videos, and forum as
the main features for their participants. The idea of MOOCs
has been a new tendency in many areas of teaching. People
around the world are engaging in online courses alone or
in groups and learning anything at anytime. The instructors
provide updated materials through the syllabus and propose
exercises with online evaluation. The evaluation is automatic
in most of the time due to the unlimited number of students
that can sign up for the courses. We have many examples of
sites with MOOCs in Table I.

The interaction between participants (professors and stu-
dents) in these sites happens in the forums where anyone can
post, answer, and discuss questions at any time. Although
the students have this open channel with the professor, the
feedback is not always immediate and the professors may take
some time to answer questions from all students. It is also
noticeable that some instructors have a Teaching Assistant (TA)
responsible for the forums. Although the addition of a TA may
increase the distance between the students and the instructor,
the TA will be more attentive to the forums while the instructor

2015 XLI Latin American Computing Conference (CLEI)

978-1-4673-9143-6/15/$31.00 c©2015 IEEE

TABLE II. MOOCS WITHOUT SCHEDULE

Name Website

Khan Academy https://www.khanacademy.org

Udemy urlhttps://www.udemy.com

Pluralsight http://www.pluralsight.com

Code School https://www.codeschool.com

Digital Tutors http://www.digitaltutors.com

Three House https://teamtreehouse.com

Veduca http://www.veduca.com.br

Acamica https://www.acamica.com

Codecademy http://www.codecademy.com

will be responsible only to organize the learning objects and
syllabus.

The MOOCs are very helpful but some courses are not
offered all the time. In case someone has an urgency in
learning a specific topic, the MOOCs presented on Table I
may not be the best option as these sites present courses on a
predefined schedule. However, autodidact (self-taught or self-
learner) students have other options of MOOCs sites where
the courses are always open. A list of these sites is presented
on Table II. In this case the instructors keep the courses open
and update the materials from time to time.

The MOOCs have full courses and predefined materials
with fixed structure. This instructional model follows the tra-
ditional teaching method applied at the classrooms where the
student will need to learn everything without any adjustment
for his/her own difficulties. While some students will abandon
the course due to the lack of basic concepts, other students
may find the course tired when they already have previous
background and the course does not go further than expected.

In terms of specific content about any topic or special
necessities (e.g. learning step-by-step with variable intensity
and extra content), the MOOCs may not be the best option.
Students interested in technological topics, like programming
languages, would probably try online tutorials or specific
forums.

Instructors and students are sometimes interested in teach-
ing or learning specific topics that don’t need a full course, and
the online tutorials are an alternative that can suit better their
needs. The tutorials are distributed online mostly in textual
formats and can explain the same topic in many levels.

Online tutorials about many subjects and areas can be
found through online search tools. Still, the technological
tutorials are probably the most distributed through Internet
users. The official sites of many programming languages and
applications have tutorial sections on their website or include
the tutorials inside contents downloaded by users. A list of
sites with tutorials is presented on Table III, and these sites
may present video tutorials and also courses based on their
tutorials.

The W3Schools is one of the most famous site with
tutorials about web technologies. All tutorials are deeply de-
tailed including the description of the programming language
paradigms, recommendations, attributes, statements, options,
and advantages. Additionally, this site also introduces some
tools to run code online and execute data base statements
through the web interface, that we are going to talk afterward.

TABLE III. SITES WITH TUTORIALS

Name Website

W3Schools http://www.w3schools.com

Vogella http://www.vogella.com

Tutorials Point http://www.tutorialspoint.com

Tuts+ http://tutsplus.com

TechTutorials http://www.techtutorials.net

Home & Learn http://www.homeandlearn.co.uk

Some web technologies has great communities that build
online tools in order to help new learners. An example is
the Try Ruby1 website. This is the recommended online
tutorial for everyone interested in learning how to program
in Ruby language. The site tries to talk with the users like
a real instructor and go step-by-step covering the basics of
the language. Try Ruby is a short tutorial but it demonstrates
how a computer system can interact with a learner during its
initial practices. Next we will discuss some solutions where
real users (the learners and professionals) can work together
in a collaborative and cooperative way.

A. Cooperative learning

The use of sites with focus on question and answer
(Q&A) extends the instructional models supported by online
environments. Although the users may need at least a basic
knowledge beforehand, Q&A sites provide search tools for
questions related to a specific topic that the users want to learn
or to discuss. Some discussions can grow up to many answers
and diverse point of view from users around the world. While
some users take advantage of these sites only to solve personal
problems, many others have the position of supporting other
users and expending some time in more detailed discussions
and explanations.

The StackOverflow2 is one example of these sites and it
does accept questions about many programming languages.
This site is part of StackExchange3 community which includes
other kind of Q&A sites from diverse topics including life,
arts, culture, recreation, and science. It is also possible to
propose ideas for new Q&A sites at Area 514 creation zone
from StackExchange.

The StackOverflow site provides some rules that guide
initial users in order to help other users to cooperate in solving
some technological questions. For programming languages,
one of the main rule is to present a minimal, complete, and
verifiable example (MCVE). The MCVE will help any other
online user to have a detailed idea of the context of the
question on most situations. In case the user wants to fix some
code regarding Javascript, HTML, or CSS, the recommended
procedure is to create a MCVE at JSFiddle5. If the user wants
to write a specific database statement using SQL, one option to
write the MCVE is the SQLFiddle6. Both options implement
the same idea presented at W3Schools and permits the users

1Try Ruby: http://tryruby.org
2StackOverflow: http://stackoverflow.com
3StackExchange: http://stackexchange.com
4Area 51 - The Stack Exchange Network staging zone: http://area51.

stackexchange.com
5JSFiddle: https://jsfiddle.net
6SQLFiddle: http://sqlfiddle.com

2014 XL Latin American Computing Conference (CLEI)

TABLE IV. TOOLS FOR DPP

Name Website

collabedit http://collabedit.com

CodeShare http://www.codeshare.io

Cloud9 https://c9.io

Squad https://squadedit.com

Floobits https://floobits.com

MadEye https://madeye.io

to modify the code on the site and see the results without any
other specific tool or even the necessity of creating a database
for the latter option.

A special feature available at JSFiddle is the collaboration
option. The user can share the link of the ‘fiddle’ created at this
site and invite other users to work together on the same code.
This idea of having many users working on the same code is
also known as pair programming and will be discussed below.

B. Pair programming

There are many ways of working and practicing with
programming languages in order to apply agile methods. One
famous practice is the Pair Programming (PP), that involves
two programmers working on the same piece of code at the
same time. This practice suggests only two programmers but
it is not restricted to this structure. Although PP is most used
by developers that work in companies, research shows that
PP can be also used as tool for practicing and also teaching
programming [5]. The advances on the technologies have
permitted this practices being extended to distributed places.

In the same way as JSFiddle, there are many tools that
provide an ambient to share code and allow many users to
program together through the Internet. This practice is named
Distributed Pair Programming (DPP) and considers users on
different machines and locations. There are tools available for
DPP and some of them also integrate audio, video, and chat
features. A list of DPP tools is presented on the Table IV.

The idea of sharing the code and running online with the
results being presented to more than one user at the same time
has many advantages. Users can apply the PP concepts where
one user only observes while the other one is coding. It is
possible to have each user programming a different method
on the same file in order to finish the program faster and
collaboratively. Some companies can also use this environment
to evaluate programmers online from different places and
observe how the candidate can solve a problem during an
interview. Recent research about DPP literature shows that
’there is a strong trend towards the use and research of the
empirical effects of DPP in teaching programming’ and that
’there is an opportunity to investigate DPP with other types of
collaborative programming’ [5].

The fundamentals discussed in this section serve as a
base to cooperative live coding practices that are going to be
discussed in the next sections. We will start presenting the live
coding that is a musical practice based on writing code lively
and evaluating this code without compilation.

III. LIVE CODING

During the 80’s and 90’s, composers and performers would
write piece of codes in some languages like Csound and wait
some time to have the result. [6] discuss that after learning
Csound from online documentation in 1996, a specific file
with tens of thousands interacting instruments took 20 hours
to build, and it sounded dreadful in the end [6, p. 81]. During
an interview, Judy Klein remember that during the 80’s she
would start a compilation of a short piece of sound at night and
hear the result in the morning, when no errors had occurred 7.
Nowadays even cheap computers like Raspberry Pi8 can be
used as sound processor with new Computer Music languages,
and we can say that the practice of live coding is built upon the
technological advances that permit high processing of codes
and sound synthesis in a matter of milliseconds.

The idea of writing codes lively is similar to the paradigm
behind interpreted languages where the user writes line by
line and have the results right after the evaluation has been
done. One can cite Javascript as an interpreted language on
client side, where the code is not compiled before being
executed. Ruby and Python are also normally taken as inter-
preted language, but this condition depends on the compiler
implementation and may differ between versions.

In Computer Music, we have lots of programming lan-
guages and some of them are interpreted languages that can
be used for live coding. The performers can write pieces of
code and hear the results while they continue to write new lines
or to modify the same code. No deep programming skills are
required for most of the languages used by live coders and the
practice have been diffused between people from many areas,
specially musicians and artists.

The practice of live coding in music is mostly used
on laptop performances and can be achieved with many
languages [7]. Research shows that the use of interpreted
languages resulted into the rising of live coding movement
and that it has become a common practice in festival calls that
include electronic music [8]. This art specialization is basically
a variation of improvisation and composition using algorithms,
and can be briefly defined as ’a form of musical performance
that involves the real-time composition of music by means of
writing code’ [9].

Live coding can also include technical mistakes as any
other musical practice [10]. An error on the code can result
in an unexpected sound and can generate an undesirable noise
or an undesirable traditional pattern depending on the music
style. The system can also crash during a performance, and
other software or hardware can intercept the sound processing
without any control from the performer side. The practice and
comfortableness with the language used can give confidence
to the performer, and some instructional exercises for this aim
are presented on the literature [10].

The live coding practice can also be done by many users
at the same time. In this case, the collaboration during a
musical performance has a structure similar to a traditional
orchestra or band, but the coders may not have a specific

7Interview with Judy Klein: http://ias.umn.edu/2013/03/01/
electronic-music/#Klein

8Raspberry Pi: https://www.raspberrypi.org

2014 XL Latin American Computing Conference (CLEI)

instrument, sound, timbre, or function. The performers can also
interconnect themselves using some kind of network and share
sound or codes, what we would call network music.

Experiments with network music dates back to the 1970’s
with The League of Automatic Music Composers [11]. The
setup of this group of composers was based on desktop
computers connected to a local network. Each member of
the group was responsible for some musical feature during
the performance and the interaction between them would take
place through the local network, and later, through phone lines.
Many other network pieces have been attempted in the context
of laptop orchestras, including the Princeton Laptop Orchestra
(PLOrk) [12], the Stanford laptop orchestra (slork) [13] and
Linux Laptop Orchestra (L2Ork) [14]. All of these orchestras
focus on local network solutions for communication and have
an infrastructure for small ensembles. Additionally, we have
some works where the performers use local network to share
data and communicate within the ensemble [7], [15]–[18].

Following these ideas, one can cite the Republic 9 quark
package that is used to create synchronized network perfor-
mances. In this case, the live coders would have to start a server
and have all users connected in order to start sharing code
and interacting. Another work that have similar functionality
is the extramuros 10, a system for network interaction through
sharing buffers of any kind of language. The last solution needs
to be configured depending on the language and at the time of
this paper it does not present any easy way to stop synthesis
on SuperCollider. Both solutions requires a server on one
computer to receive connections from clients, and additionally
it would be necessary to open network ports or change firewall
settings before starting any interaction.

The collaboration in live coding is also presented on the
Gibber11 library for WebAudio. The users can synthesize code
on the browser and talk through a chat room in other to have
a collaborative online session. Although this solution permits
users to share code and synthesize online, there is no way to
share the same code environment at the same time, and the
users will probably need to share the code through the web
chat if they want to try a live session. In the session we will
then present SuperCopair, a tool created by the authors that
can fulfill all the blank spaces for collaborative live coding
and also inspire the cooperative live coding practice.

IV. SUPERCOPAIR

SuperCopair is an application created as a package for
the Atom.io12 IDE. This IDE has numerous packages for
many programming languages and presents some solutions
for coding, debugging, and managing projects. Atom pack-
ages are programmed in CoffeeScript13, which is a program-
ming language that can be converted to Javascript and can
also integrate its libraries. The developers can install Atom
packages to enable various functionalities in the IDE such
as: communicate through chats, use auto-complete in certain
programming language syntax, interact with desktop and web

9Republic quark: https://github.com/supercollider-quarks/Republic
10extramuros: https://github.com/d0kt0r0/extramuros
11Gibber: http://gibber.mat.ucsb.edu/
12Atom.io: http://atom.io
13CoffeeScript: http://coffeescript.org

applications, integrate with the terminal command line, and
have many options based on other packages. In the same way,
the users can just search for SuperCopair and install without
many steps.

SuperCopair is based on two Atom packages: atom-
supercollider and atom-pair. The first package turns Atom.io
into an alternative IDE for SuperCollider programming lan-
guage and permits users to openly communicate locally with
SuperCollider audio server through OSC in the same way we
can do on SC-IDE, the default IDE. Additionally, the users can
take advantage of packages from Atom and quarks together
in the same interface. The latter package is used for pair
programming through the Internet. The atom-pair package is
based on Pusher cloud service and its default configuration is
based on the community free plan, but a user can modify the
settings and use his/her own keys. We decided to merge both
packages to add new features for collaborative live coding, and
finally had dubbed it the SuperCopair package. The main idea
is that all participants evolve into a collaborative practice and
performance.

The IDEs for SuperCollider have shortcuts to evaluate a
line, a block, and to stop all sound process that is running. In
addition to these options, the SuperCopair package includes
methods and shortcuts that can broadcast the events cited
and execute them on all users connected at the same pairing
session. Through the shortcuts, one can decide to evaluate
selected code either only in the local machine or in all
computers on the same session. One can also turn on and off
a broadcast alert option in the settings in order to be asked
or not before evaluating every broadcast event sent by another
user in the same session. These options allow each individual
to have control over the code that can be evaluated in the local
machine.

The broadcast events are diffused to all connected users
through the cloud service and the package evaluates on arrival
each event message received. The message includes the code
to be evaluated and the user identification. A representation of
a session using SuperCopair package is shown at Figure 1.

Before inviting others, users need to start a new session
following an instructional step-by-step setup presented on the
package page. Once a session starts, the session ID string needs
to be shared between collaborators that want to join the same
session. The shared session ID is based on the channel created
at the cloud service and it contains the user’s keys. Every user
who joins a session will see the most recent version of the
shared code. The users can identify each other by different
color markers on the left side of the shared file representing the
line or lines in edition. A pop up provides information about
users joining or leaving the session. Furthermore, a message
including user’s identification and the code evaluated appear
at SuperCollider post window right after each broadcast event
is evaluated. In case the broadcast alert option is on, a dialog
will appear whenever the user receives an event message from
another participant and this dialog asks if the user would accept
or reject the code evaluation. The alert dialog will have the
sender’s id and the code sent via broadcast.

To summarize, this tool permits both participants to share
a distributed audio environment and listen to the same sound
when synthesized in a broadcast manner. SuperCollider live

2014 XL Latin American Computing Conference (CLEI)

Fig. 1. Session with two users from different countries.

coding sessions through SuperCopair will take advantage of
the easy setup and the minimal requirement of an Internet
connection, instead of the network and server configuration
required by the other solutions cited. Although the main idea
behind this project is to provide a tool for collaborative live
coding, new usability is proposed in this paper as a result
of reflection after some experiments. In the next section we
are going to discuss the possibilities of learning program
languages related to music and the new paradigms focusing
on cooperation and musical interaction.

V. COOPERATIVE LIVE CODING

The cooperation and collaboration terms are similar regard-
ing the idea of working together, but they differ in terms of
benefits offered and tasks equilibrium. Inside a collaborative
environment, we have all participants focusing on the same
goal and working together to achieve same objectives. One can
suggest that the players of the same team on any sport game are
working collaboratively in order to win the game. On the other
hand, a cooperative environment provides different benefits

for the participants and they may have dissimilar objectives.
Following the last example, two teams might cooperate during
a match following the rules of the game in order to have a
fair play, but they will not share the same goal (because one
has to win) and each team probably benefits from the other’s
(failed) activities.

The cooperation can also be discussed in other ambit like:
biology, when some species interacts in mutualism; business,
when one company offer a service to the other, even if they
share the same market; and personal life, when a relationship
end up in divorce due to the unsuccessful collaboration be-
tween the participants or to the absence of shared goals. These
examples illustrate the many characteristics of the cooperation
and how it can be applied in different areas. In this section we
will discuss the aspects of cooperative live coding in computer
music education.

Networked live coding environments have been focused in
collaboration as we presented on Section III. All participants
are working together to execute a musical piece and share the
same final result as a common goal. In most of the cases,
sound is the only artifact that is shared, but the performers
can also share codes. Some tools also enable chatting, audio,
and video interaction between the participants, whether they
are sharing the same physical space or they are in different lo-
cations. Although the experiments with SuperCopair have been
conducted as distributed collaborative live coding sessions, the
cooperative environment has emerged during some moments.

During the sessions using SuperCopair, we had participants
from different levels of experience on live coding and also
some new users that decided to learn how to code during the
session. The collaboration on the final sound was similar to
other live coding sessions, but the experience added another
way of interaction in live coding: the cooperation.

The cooperation aspect emerged from some events that
came into view from the live coding sessions. Experienced
users are faster and have written lots of code from the scratch
without any problem, while the apprentices start from basic
structures or from portions of codes available on the file. As
all users were trying to synthesize the codes on all computers,
it became easy to perceive if something was going wrong
because everybody was sharing the code, evaluation, synthesis,
and errors. The errors coming from novice programmers were
often fixed by the experienced users, and they also discussed
the solutions between themselves using comments on the file.
Some tricks from the live coding practice were introduced
by advanced users and the initial learners rapidly became
instructors for new users and these instructors were following
the same cooperative practices of the experienced users. These
events inspired the instructional model that is proposed and
described in the next section.

VI. THE INSTRUCTIONAL MODEL

The discussion about the instructional model starts with an
example of a cooperative live coding session that is presented
on Figure 2. In this session we have two users working on the
same file through the SuperCopair package on Atom.io IDE.
Both users can see the line that is being edited by the other
user following the color mark at the line number column. The
comments presented on the file explain the following codes.

2014 XL Latin American Computing Conference (CLEI)

In this live coding session the users have the same benefits of
any online environment for PP or DPP. However, this session
presents more benefits and advantages due to the cloud service
and IDE integrated through SuperCopair.

While some solutions presented at Subsection II-B have
cloud services on their background, the cloud service used in
our solution offer an adaptable and easy-to-setup environment
for multiple users. Users can pay for dedicated infrastructures
in order to avoid the free service limitations, and it is also
possible to select the preferable cluster to connect. The net-
work administrators from the service will take care of data
distribution system which has a high level of abstraction from
the user point of view. A key from the service is all the client
need in order to use the service requested and it encourages
the adoption of this service by novices and advanced users.

The IDE adopted includes many features that will hardly
be available at the solutions discussed at Session II. There is a
community working on packages for this IDE, making lots of
options available, and supporting the development of packages
like SuperCopair. Atom.io IDE offers common features like
code completion, many shortcuts, and code highlight, but it
also presents almost three thousand packages available with
other features at the time of this paper.

A. Educational aspects

Although the cloud service and IDE bring many advantages
for this live coding session, the combination of their features
imply a new educational concept for computer music and live
coding that we introduce below. We also have a discussion
regarding educational values from the instructional model
proposed herein. All the instructions and directions can be
applied to local or local network structures as the instructor and
learner can share or not the same classroom during the process.
We can also consider a mixed environment where a group of
participants share the same place while other participants are
remotely connected to the same session.

1) Use comments for discussion: In this instructional
model, the learner and the instructor can write comments with
questions or instructions on the file. Comments are useful in
this case because they will not be interpreted or cause errors
even if the whole file is evaluated. The communication through
comments is important if the instructor and the learner share
the file from different locations, but the comments may be
avoided whenever all users are in the same room.

2) Assist and fix codes: The cooperative live coding is also
an advantage for collaborative live coding performances. An
experienced user of the language can audit the performance
and help to fix codes while other are performing. This special
user does not need to participate in the performance as musi-
cian, and can also act just as a conductor writing comments
in order to guide the live coders during the performance. The
users of forums and mailing lists for SuperCollider questions
can schedule meetings to code together. The sessions are not
restricted for two users and the final code can be posted again
in the same place where the discussion has started.

3) Interact during classes: Programming classes can in-
clude more interaction if all students can access the same file as
the instructor. The code can be synthesized on all computers at

the same time, and the students can hear the sound at their own
computers without great speakers on the classroom connected
to the computer of the instructor. Some students can make use
of headphones when preferable, and the number of students
connected is not a problem due to the advantages of the cloud
computing behind the system. Both students and instructors
can participate on the class in this model even if they are at
home or traveling to a conference. Additionally, the students
can interact directly and instantly on the code learned, as they
only need to add code or comments from their own computers
during the class. This model can also provide benefits to the
instructor, which can ask questions for the students and see
the code being written lively on the file shared.

4) Offer online remote tutoring: There are students that
prefer personal instructors as a supplement to the learning
process, and some instructors prefer to work from home
or want to have students from different locations. In this
case, both can have benefits from this model. The instructors
will not need to move between the students houses and can
schedule more classes without intervals between them taking
advantage of the interaction through the Internet, and the
students can have instructors from different countries. The
best students can also offer assistance to others after classes
even without an specific place to meet together. On the other
hand, experienced live coders can share their knowledge at
workshops without physical participation, while the audience
can join the same session, share the code, and ask questions on
the file The audience can also be distributed, and the proposal
of workshops will make the most of the new technologies
exploring the functionality of the tool presented.

Although it is not an exhaustive list of directions, we intend
to consider this discussion as a starting point for this in-
structional model for computer music and live coding through
a cloud service solution. This instructional model have the
cooperation in favor of the instructor or the learner depending
on the situation. The participants may not have the same
benefits or goals during a cooperative live coding, but they
have to evolve in a helping behavior with or without reward
in order to agree in a cooperative live coding environment. An
open cooperation movement can also arise from this practice
and confront some limits of learning.

VII. CONCLUSION

Many instructional models have been proposed since the
first advances on communication technologies. We have in-
structors using letters, magazines, calling, videos, and in-
cluding occasional meetings to the teaching process, or at
least using one of these channels for receiving feedback from
learners. What is important is the link between the learning
material and the learning process to ensure the nature of the
distance learning models [19].

In this paper we described a new model of distance
education that can make use of the distributed live coding and
introduce the cooperative idea. In this model we propose that
instructors and learners can share codes and audio synthesis
from distant places and also in the same room through the
advantages of SuperCopair package. The cloud computing
behind the solution allows participants to join a session and
interact through the file where the code is being written almost

2014 XL Latin American Computing Conference (CLEI)

(a) Windows user (b) Mac OS user

Fig. 2. Cooperative session with two users. The users share the same file and they can see where the other pair is working following the colors markes visible
at the line number column. They can also write comments on the file in order to communicate.

instantly, and without problem with the number of participants.
As for example, the free plan used at the cloud service behind
SuperCopair accepts up to 20 users, but one can have 10
thousand participants when assigned for a paid plan.

The cooperation of the participants is assumed during the
live coding session, although new features can be added in the
future in order to add more control from the instructor’s point
of view. We suggested many opportunities for the practice
of cooperative live coding following our experiences, and
one can conclude that the results can be gradually presented.
During our sessions, the learners became instructors of basic
topics in a short time. The interaction through the comments
was valuable like a chat with many rooms, as we had many
discussions in many portions of the file happening at the same
time.

The tool is proposed to SuperCollider, but it can be
extended to languages like Csound, Chuck, and Processing.
Interpreted programming languages are more suitable for this
environment due to the fast output without compilation. How-
ever, the idea of cooperative live coding can be used with any
programming language, considering that the compilation on
the learner side needs to be done depending on the operating
system.

The authors wish that the cooperative live coding instigate
many instructional models, and that more solutions for inter-
action between distant learners and instructors emerge from
the advances on cloud computing. As the Internet is the only
requirement for this practice using , we need to focus the
attention on bandwidth, timezone, and system requirements in
order to have more cooperative live coding sessions.

REFERENCES

[1] C. V. A. P. da Silva, C. B. L. Neto, and M. R. Petrucci, “Hipermı́dias
educativas: a aplicabilidade de objetos de aprendizagem em planos de
aula nos espaços virtuais,” in IV Encontro Nacional de Hipertexto e
Tecnologias Educacionais. Universidade de Sorocaba, 2011.

[2] M. Silva et al., Sala de aula interativa. Quartet, 2000.
[3] Â. Á. C. Dias and H. Chaves Filho, “A gênese sócio-histórica da idéia

de interação e interatividade,” Tecnologias na educação e formação de
professores, 2003.

[4] S. M. Hord, “Working together: Cooperation or collaboration?.” 1981.
[5] B. J. da Silva Estácio and R. Prikladnicki, “Distributed pair

programming: A systematic literature review,” Information and Software
Technology, vol. 63, no. 0, pp. 1 – 10, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584915000476

[6] P. Ford, “Processing processing,” in The Best Software Writing I.
Springer, 2005, pp. 79–93.

[7] N. COLLINS, A. McLEAN, J. ROHRHUBER, and A. WARD,
“Live coding in laptop performance,” Organised Sound, vol. 8, pp.
321–330, 12 2003. [Online]. Available: http://journals.cambridge.org/
article S135577180300030X

[8] N. Collins, “Live coding of consequence,” Leonardo, vol. 44, no. 3, pp.
207–211, 2011.

[9] T. Magnusson, “Algorithms as scores: Coding live music,” Leonardo
Music Journal, vol. 21, pp. 19–23, 2011.

[10] C. Nilson, “Live coding practice,” in Proceedings of the 7th
International Conference on New Interfaces for Musical Expression,
ser. NIME ’07. New York, NY, USA: ACM, 2007, pp. 112–117.
[Online]. Available: http://doi.acm.org/10.1145/1279740.1279760

[11] G. Weinberg, “The aesthetics, history, and future challenges of intercon-
nected music networks,” in International Computer Music Conference,
2002, pp. 349–356.

[12] D. Trueman, “Why a laptop orchestra?” Organised Sound, vol. 12,
no. 02, pp. 171–179, 2007.

[13] G. Wang, N. Bryan, J. Oh, and R. Hamilton, Stanford laptop orchestra
(slork), 2009.

[14] I. I. Bukvic, T. Martin, E. Standley, and M. Matthews, “Introducing
l2ork: Linux laptop orchestra,” in New Interfaces for Musical Expres-
sion, 2010, pp. 170–173.

[15] J. Rohrhuber, A. de Campo, R. Wieser, J.-K. van Kampen, E. Ho, and
H. Hölzl, “Purloined letters and distributed persons,” in Music in the
Global Village Conference (Budapest), 2007.

[16] A. R. Brown and A. C. Sorensen, “aa-cell in practice: An approach
to musical live coding,” in Proceedings of the International Computer
Music Conference. International Computer Music Association, 2007,
pp. 292–299.

[17] S. Wilson, N. Lorway, R. Coull, K. Vasilakos, and T. Moyers, “Free as in
beer: Some explorations into structured improvisation using networked
live-coding systems,” Computer Music Journal, vol. 38, no. 1, pp. 54–
64, 2014.

[18] D. Ogborn, “Live coding in a scalable, participatory laptop orchestra,”
Computer Music Journal, vol. 38, no. 1, pp. 17–30, 2014.

[19] D. J. Keegan, “On defining distance education,” Distance Education,
vol. 1, no. 1, pp. 13–36, 1980. [Online]. Available: http://dx.doi.org/
10.1080/0158791800010102

2014 XL Latin American Computing Conference (CLEI)

