
Revisiting the Visibility Problem with a Hybrid
Structure Paradigm
Icaro L. L. Cunha and Luiz M. G. Gonçalves
Universidade Federal do Rio Grande do Norte

DCA-CT-UFRN, Campus universitrio, Lagoa Nova, 59078-970, Natal, R, Brazil
Email: ivellius@gmail.com, lmarcos@dca.ufrn.br

Abstract—We revisit the problem known as the visibility
problem, for computing a potentially visible set of primitives,
proposing a solution that can be used to accelerate the processing
in real-time 3D visualization applications. We come up with a
resulting dry structure in the sense of data reduction that can
be used for on-line, interactive applications. Our main goal is to
load the minimum amount of primitives from the scene during
the rendering stage, as possible. For this purpose, our algorithm
executes the culling by using a hybrid paradigm based on
viewing-frustum, back-face culling and occlusion models. Results
have shown a substantial improvement over these traditional
approaches if applied separately. This novel approach can be used
in devices with no dedicated processors or with low processing
power, as cell phones or embedded displays, or to visualize data
through the internet, as in virtual museums applications.

Keywords-Visibility Culling; Visualization Structure; Real-time
3D Visualization; Hidden Primitive Culling

I. INTRODUCTION

In this work, we revisit the visibility problem, that is, the
problem of computing a potentially visible set of primitives in
a scene model, in the perspective of interactive and real time
applications. In light of this study, we propose enhancements
in the visualization pipeline model coming up with a visu-
alization structure that minimizes the amount of useless data
being loaded to generate the visualization of a given scene.
We accomplish this by dividing the scene into a grid, then
associating to each grid block the primitive(s) that belong
to it and finally determining the visible set of primitives.
As a novelty, our method makes use of the Ja

1 triangulation
structure [1] to create the subdivision grid. We choose this
structure due to its algebraic and adaptive useful features.

In 3D graphics, hidden surface determination (also known
as hidden surface removal, occlusion culling or determining
the visible surfaces) is the process used to determine which
parts of the surfaces are visible and, consequently, which ones
are not visible from a certain point of view. An algorithm
for hidden surface determination is a solution to the problem
of visibility, which is one of the first major problems in the
area of 3D computer graphics. The process of hidden surface
determination is sometimes called hiding. The analog for lines
is to render the hidden line removal. Determining the hidden
surface is required to process an image properly, so that one
cannot look through (or walk into) the walls in virtual reality
applications for example.

Besides the advances in hardware technology and software
experimented in the last decades, the visibility determination
has yet being one of the main problems in computer graphics.
Various algorithms capable of removing hidden surfaces have
been developed over the years to solve this problem [2]. Basi-
cally, these algorithms determine which set of primitives that
make up a particular scene are visible from a given viewing
position. Cohen et al. [2] establishes that the basic problem is
mostly solved, however, it is known that, due to the constant
demand for higher amount of 3D data, algorithms such as Z-
buffer and other classical approaches may have trouble while
trying to guaranteeing the visualization of the scene in real
time. In fact, agreeing to Cohen, one can find works in the
literature such as Jones [3], Clark [4] and Meagher [5] that
addressed this issue in the very beginning of CG. Nonetheless,
we recall the attention to the actual importance of this problem
during evolution of CG. Researchers as Airey et al. [6], Teller
and Sèquin [7], [8], and Greene et al. [9], focuses on this
issue and have revisited the problem of visibility to speed up
visualization.

Visibility culling aims to quickly reject primitives that do
not contribute to the generation of the final image of the scene.
This step is done before the step of hidden surface removal
is performed, and only the set of primitives that contribute
at least to one pixel in the screen is rendered. Visibility
culling is executed using the following strategies: back-face
and view-frustum culling [10]. Back-face culling intends only
to use primitives looking at (facing to) the camera display,
and view-frustum culling rejects primitive located outside the
visualization frustum. Over the years, efficient hierarchical
techniques have been developed [4], [11], [12], as well as
other optimizations [13], [14] in order to accelerate visibility
culling. Besides these techniques, the occlusion culling process
avoids rendering primitives that are hidden (occluded) by
other primitives in the scene. This technique is more complex
because it involves an analysis of the overall relationship
between all primitives in the scene. Figure 1 illustrates the
relation between the three known culling techniques.

Since these traditional contributions revisiting the visibility
culling, as cited above, and some few further contributions
[15], [16], [17], [18], not recent, which will be better explored
in Section II, we could not find any up to date literature on
this subject. As there are many online and real-time 3D world
navigation applications (virtual museums or buildings), and

2015 XLI Latin American Computing Conference (CLEI)

978-1-4673-9143-6/15/$31.00 c©2015 IEEE

Fig. 1: Types of visibility culling techniques: view-frustum
culling (in red), back-face culling (in blue), and occlusion
culling (in green).

they require significant amount of primitives to be rendered
in real-time, we decided to revisit the visibility problem to
see if it can be even enhanced. In fact, we observe that the
above techniques has some difficulties as the complexity of the
occlusion culling to analyze the whole scene or the amount of
computations in order to determine primitives facing sides or if
primitives are inside the frustum in visibility culling methods.
These are not as trivial mainly in massive data or where the
scene is modeled at once. This may occur in a museum scene
where there are too many sculptures for example or in outside
scenarios such as a city landscape.

We overcome those difficulties by proposing a different ap-
proach introducing and adapting the above simple techniques
to our context. We employ a visualization structure that is
capable of obtaining a potentially visible set of primitives
of the scene from the viewpoint of a user. As said above,
this structure is constructed by subdividing the whole scene
into a grid based on a triangulation. With this, we achieve
significant improvements on the results. In particular, our
method can handle this kind of data reducing the resource
requirements. In the experiments, we verify a removal gain
of 15% to 20% of primitives for single objects and could
observe several interesting results that validate and delimit our
approach. These will be better discussed during the paper and
mainly in the results section.

Contributions: The main contribution of this work is the
visualization structure itself that is capable of determining
occlusion culling in two ways: internal block occlusion and
adjacent block occlusion. The use of algebraic functions
for fast access of block culling, block faces and adjacency
is also another contribution that has helped enhancing the
visualization process.

One other contribution of this structure is that it can also
be used to determine an hierarquical order of graphics data

transmition of online applications. In case of a Virtual Museum
application, for example, it can be used to determine the visible
set of primitives at the starting point of simulation. So, in
this case, our structure can not only be used to minimise
the ammount of data in the visualization stage, but also in
transmition stage of online applications.

II. RELATED WORK

Since view frustum and back-face culling are mostly trivial
to determine, the recent literature up to this point has mostly
been focused on occlusion culling. One of the most valuable
works that we found in this subject area is the one of Cohen et
al. [2] that is a very useful survey. They subdivide and classify
the various occlusion culling techniques developed proposing
a classification of the various methods in accordance to their
characteristics, as seen in the next subsections.

A. Techniques Classification

The occlusion culling methods can be classified as point
based or region based methods. Point based methods execute
their computations from the perspective of the view point. On
the other hand, region based methods perform their computa-
tions from a global point of view that is valid from any region
of the scene. Point based methods can be also classified as:

• Image Precision Methods - operate with the discrete
representation of the objects when they are broken into
fragments during the rasterization process. Among these
are the Ray Tracing [19], [20], [21], [22], [23] and the
Z-buffer [9], [24], [5], [25], [26] based methods that are
the most common.

• Object Precision - use the raw objects for the visibility
computation. Among these methods we can find the
works by Luebke and Georges [27] and by Jones [3].

Also, region based methods can be classified as:
• Cell-and-Portal - Starts with an empty set of visible

primitives and adds them through a series of portals.
Among cell-and-portal based methods we cite works by
[6], [8].

• Generic Scenes - Initially assumes that all primitives are
visible and then eliminates if they are found to be hidden.

Cohen et al. [2] also devised other classification criteria such
as: if a method overestimates the visible set (conservative) or
approximates it; what is the degree of over-estimation for the
conservative methods; if a method treats the occlusion caused
by all objects in the scene or just a selected subset of occluders;
if each occluder is treated individually or as group to be more
precise; if the method is restricted to 2D floorplan or can they
handle 3D scenes; if the method executes a precomputation
stage; if it requires special hardware to do the precomputation
stage or even the rendering stage; and if it can treat dynamic
scenes.

B. Recent approaches

Bittner et al. [15] propose a from-region visibility method
were rays are cast to sample visibility and use the information
from each ray for all view cells it intersects. It uses adaptive

2015 XLI Latin American Computing Conference (CLEI)

sampling strategies based on ray mutations that exploit the co-
herence of visibility. Chandak et al. [16] propose a method that
is somewhat similar to ours, their approach uses a set of high
number of frusta and computes blockers for each one using
simple intersection tests. They use this method to accurately
compute the reflection paths from a point sound source. The
method of Tian et al. [17] integrates adaptive sampling-based
simplification, visibility culling, out-of-core data management
and level-of-detail. During the prepocessing stage the objects
are subdivided and a bounding volume clustering hierarchiy
is built. They make use of the Adaptive Voxels, which is
a novel adaptive sampling method applied to generate LOD
models. Antani et. Al. [18] introduce a fast occluder selection
algorithm that combines small, connected triangles to form
large occluders and perform conservative computations at
object-space precision. The approach is applied to computation
of sound propagation, improving the performance of edge
diffraction algorithms by a factor of 2 to 4.

C. Contextualization

Our method can be classified as a region based method,
similar to the cell-and-portal. The only difference is that
instead of a set of cells we use the scene subdivision grid
and instead of a portal we use the adjacency between grid
blocks. This has proved experimentally to be useful as well,
at least.

Following the other cited criteria of Cohen et al. [2], our
method overestimates the potentially visible set. We discuss
the degree of over-estimation in Section V. Though our
occlusion is block based, our method treats the occlusion
created by all the blocks in groups. Our method handles 3D
scenes and, due to the Ja

1 triangulation structure, we believe
we can add a fourth dimension for animation applications. A
pre-computation stage executes without the need of a special
hardware, though the use of a dedicated graphics processor
would speed-up the process. And so far we treat dynamic
scenes by ignoring the occlusion made by the moving objects.
Because of this we do not show results based on moving
objects.

D. The Ja
1 Triangulation

The Ja
1 triangulation [1] is an algebraically defined structure

that can be built in any size. To accommodate local aspects, the
Ja
1 triangulation handles refinements naturally. Two of its main

characteristics are the existence of a mechanism to uniquely
represent each simplex of the triangulation and the existence
of algebraic rules to traverse the structure. Using these rules
prevents the structure need to store connectivity information
of simplices thus enabling more efficient storage.

The Ja
1 triangulation consists of a computational grid

formed by n-dimensional hypercubes (blocks). Each block is
divided by 2nn! n-simplices that can be described algebraically
using the sixfold:

S = (g, r, π, s, t, h).

The first two elements of S defined in that block are
contained in the simplex, being a vector g n-dimensional coor-
dinates indicating the block in a particular level of refinement
r grid. Figure 2, left, illustrates a two-dimensional grid of Ja

1

and, right, a block of this outstanding level of refinement grid
with r = 0 (0-block) and g = (3; 2). Also in Figure 2 it can be
noticed that the blocks are darker for grid level r = 1 (socalled
1-block) and hence form part of a region of the grid of higher
resolution.

Fig. 2: 2D example for a triangulation grid Ja
1 (left) and details

of the block g = (3; 2), r = 0 where it is shown two paths
for tracing the block simplices.

We believe that since the Ja
1 triangulation is naturally

adaptive, this help in making this structure more precise when
it comes to over-estimating the potentially visible set from
the scene. This is because, with more refined (smaller) blocks
in certain regions of the scene, more blocks are fully filled.
Due to this, the adjacent block occlusion culling can be more
common and thus more effective.

Since we are using Ja
1 triangulation structure in this work

for a purpose other than triangulating, from now on we will
refer its basic grid as the Ja

1 structure.

III. TECHNIQUE OVERVIEW

We base our visualization structure on the algebraic struc-
ture of the Ja

1 structure. The whole 3D scene is contained
within the grid created by the initial Ja

1 structure. From the
point of view of the camera, the Ja

1 structure calculates all
elements visible on it. So every time that the camera is moved
the visible set of primitive calculation is redone.

Our visualization structure is able to determine occlusion
culling in two ways: internal block occlusion and adjacent
block occlusion. The internal block culling occlusion is iden-
tified using only the primitives inside each block and it is done
for every block face as illustrated in Figure 3 for face F1.

Figure 4 illustrates the overview of our technique. Basically,
it is subdivided into stages: the preprocessing and the visual-
ization stages. In the following we better detail these stages.

A. Preprocessing Stage

During the preprocessing stage, we use the Ja
1 structure

basic grid to generate the visualization blocks.
The preprocessing stage is done in four steps:

2015 XLI Latin American Computing Conference (CLEI)

Fig. 3: Technique for determining internal block occlusion
using an approach similar to Z-buffer. When verifying the
visible set of Triangles for face F1, the rays determine that
triangle T1 hides triangle T2.

Fig. 4: Overview of the processing pipeline for visualization.

1) Given the user input where it is established the minimal
dimension of the grid along one of its axis, we determine
the size of the grids edges and then calculate the rest of
the grids dimension.

2) Each triangle is firstly mapped to the grid block(s) where
it is contained;

3) By using the triangles normals we identify what face of
the block(s) the triangle is looking at. In this step we
treat the back-face culling;

4) The internal block occlusion is then calculated using an
approach similar to Z-buffer. The final list of primitives
is assigned to each block faces. During this step we can
find out if the block face is fully filled, this is needed to
determine adjacent block occlusion in the visualization
stage. This step is illustrated in Figure 3.

B. Visualization Stage

We use the grid to verify what elements are being directly
looked at. Given the camera position ((i, j) illustrated in
Figure 5) and its look-at vector, we use the Ja

1 structure
transition function to access the blocks in its line of sight. The
look-at vector is also used to determine which block face(s)
will be used to compose the final list of potentially visible of
primitives.

Before each transition from block to block, the visible face
of the current block is verified if it is fully filled in order to
permit the operation. If the case is true, this means that the
visible set from that face totally hides the visible set from its

adjacent block face, so the hidden block and its subsequent
adjacent blocks are not needed for the rendering stage. In
Figure 5, the transition step illustrated. In this Figure, the after
visiting the block (i+1, j) the blocks (i+2, j+1), (i+2, j)
and (i+2, j− 1) are queued to be visited next. After visiting
block (i + 2, j − 1) and determining that its visible face is
fully filled, the next adjacent blocks are not directly added to
the visitation cue. But there might be a case, in this example,
where the block (i+2, j) adds one or more of these adjacent
blocks to the cue.

Fig. 5: Illustration of the trasition block operation, we illustrate
a 2D case analogous to the 3D case. In this example each
visible block is visited to obtain the visible set of primitives
that belongs to them. In this illustration we indicate that the
visible face of block (i+ 2, j − 1) is fully filled, so the next
adjacent blocks are not directly added to the visitation queue
due to it(they might be added due to another block).

The final list of blocks faces will then be used to compose
the potentially visible set for the rendering stage. As said
before, every time the camera is moved to another block or its
look-at vector is changed, the calculation to obtain the visible
set of primitives is redone.

Our method is capable of dealing well with primitive
transparency in the case of both types of occlusion culling.
It does so during the internal block occlusion stage. When the
ray encounters a transparent/semi-transparent primitive, that
primitive is tagged for transparency processing and the ray
will continue to try and find another primitive along its path.

IV. EXPERIMENTS

To assess the efficiency of our visualization structure, we
have performed a series of experiments, where each model
is visualized individually and we navigate along the scene.
During the experiments, we basically verify the following
result data.

• The mean frame rate (still (A) and navigation (B)) in
comparison with using the whole data (C). This is a
basic measure for any interactive 3D application and is
measured in frames per second;

• Mean ratio (B) between the potentially visible set and
the total number of primitives of the scene (#Pri). We

2015 XLI Latin American Computing Conference (CLEI)

also analyze the mean ratio of only using view-frustrum
and back-face culling (A) with the #Pri, we verify this to
identify the proportion of elimination from each culling
technique. The values range is 0−1 and can be interpreted
as for example: if ratio is equal to 0.10 then this means
that the method eliminates 10% of the original primitives;

• Mean overestimation ratio (as proposed in [2]), where we
compare the ratio between the size of the visible set (VS)
and the size of the potentially visible set (PVS), in other
words the ratio is equal to V S/PV S.

Just like the result data from 1, we calculate the mean value
of the data in 2 and 3 after each scene navigation. For each
result data we also present its standard deviation (σ). In order
for providing a fair comparison between each ratio value, the
same sequence of the scene navigation steps are made for
every experiment executed in each model.

V. RESULTS

We have performed a series of experiments to assess the
visualization structures efficiency. These experiments were
done on an Intel Core i7 2.00Ghz PC with 8GB Ram, with a
Radeon HD 6770Ms Graphics Card and running on Windows
7 (64bits).

For these experiments, we use a series of simple mesh
models obtained from the Aim-at-Shapes Repository1: Chinese
Lion (identified as i in result tables), Vase (identified as ii),
Armadillo (identified as iii), Hand (identified as iv) and Eros
(identified as v), and also use the Manhattan model (identified
as vi). This model was developed by Andrew Lock and is
available for purchase at the 3D Cad Browser homepage 2, it
is composed by a set of 306 meshes with a total of 3.6 million
polygons, 5 million vertices and 296 texture images each one
with the resolution of 4096x4096. This model is a great study
case as it has all primitives forming a unique model of the
scene. Figures 6 and 7 illustrate each model. The models shape
characteristics and high level of delail makes them ideal to test
our structures efficiency for visualizing individual meshes.

Figures 8 and 9 illustrates the series of navigation steps
taken during the experiments. For the simple meshes we use
the steps in Figure 8 and for the Manhattan model we use the
steps illustrates in Figure 9.

Tables I and II present the result data detailed in the previous
section obtained during our experiments. As we mentioned
previously, the experiments executed in each model are done
using the same sequence of navigation steps and same grid
dimension.

As we can see from Table I the frame rate obtained when
visualizing each model using the visualization structure is
better than using the whole data of the model. This result only
ascertains that the structure is working properly, the important
results from this series of experiments is if the recalculation of
the visible set affects the frame rate. By comparing columns
1.A and 1.B we can see that the recalculation step executed

1Homepage: http://aim-at-shape.net/
2Available at: http://www.3dcadbrowser.com

Fig. 6: Models used for testing the proposed approach. All
models are very interesting test subjects due to their shape and
high level of detail. Meshes Chinese Lion, Vase, Armadillo,
Hand and Eros are respectively composed of 108k, 113k, 344k,
391k and 395k triangles.

Fig. 7: Illustration of the Manhattan model. This model is
composef of various objects which potentially makes it ideal
for the occlusion detection experiments.

TABLE I: Result comparison of the frame rate experiments for
each model. We analise the mean frame rate of static scene
(1.A), dinamic scene (1.B) and the scene with the whole data
visualization. We also analise the standard deviation of each
experiment.

Model 1.A σ(1.A) 1.B σ(1.B) 1.C σ(1.C)

i 28.569 0.967 25.773 2.591 18.883 2.766
ii 26.842 1.304 24.962 2.215 19.890 0.924
iii 11.367 0.557 9.756 0.860 6.221 0.245
iv 7.161 0.410 6.929 0.638 5.628 0.223
v 6.957 0.456 6.566 0.703 5.364 0.326
vi 10.75 0.884 9.85 0.788 0.6 0.043

2015 XLI Latin American Computing Conference (CLEI)

Fig. 8: Illustration of the navigation steps used during the
experiments with the simple models illustrated in Figure 6.

Fig. 9: Illustration of the navigation steps used during the
experiments with the Manhattan model.

along the navigation sequence does not affect the frame rate
too much, lowering it at most by 15%.

TABLE II: Comparizon between the mean rate (and standard
deviation) of the set where the primitive set are removedby
the view-frustum and backface culling in relaiton with #Pri
(R̄V F+BF/PRI) and the mean rate (and standard deviation) of
PVS in relation to #Pri (R̄PV S/PRI). We also analyze the
rate between the number of primitives that are really visible
and the size of the potentially visible set of primitives for
experiment (σ(R̄V S/PV S)).

Model 2.A σ(2.A) 2.B σ(2.B) 3 σ(3)
i 0.459 0.005 0.111 0.001 0.913 0.058
ii 0.452 0.002 0.291 0.003 0.957 0.032
iii 0.411 0.004 0.165 0.002 0.894 0.075
iv 0.467 0.002 0.132 0.003 0.914 0.067
v 0.401 0.002 0.215 0.003 0.856 0.077
vi 0.726 0.015 0.204 0.031 0.821 0.061

In Table II, we can see that the reduction of data being used
for the visualizations stage is quite significant. Although the
back-face culling did most of the hidden primitive removal, the
occlusion culling still removes a reasonable amount of hidden
primitives. And in the case of the vase, due to its concave

shape, we can see that the occlusion culling removes a higher
proportion of primitives. It removes 29.1% in comparison to
the other models where a rate lower than 22% is removed.

From these results, we can figure out that, since the models
that we use in each experiment are single object meshes, the
occlusion culling does not remove as much primitives because
of the actual lack of occlusion that occurs in the respective
scene. In the same manner, the overestimation ratio is low due
to the use of the single object meshes. At most the possible
visible set is higher than the visible set by 15%.

When we analyze the overestimation ratio of our method in
comparison with previous works, we could find out that our
methods visible set has a roughly similar ratio, ranging from
3−9 For the three biggest models used during the experiments,
the pre-processing stage took 60− 80 seconds to execute.

Though we are showing this as a result of the visual-
ization structure, the execution of this stage does not affect
the visualization stage itself and, in many cases, once the
precomputation stage has been executed, its application can
just store the data obtained.

VI. CONCLUSION

We introduce a new visibility paradigm based on the use
of Ja

1 triangulation structure that avoids the rendering of too
much unnecessary primitives in a 3D scene. This structure
is capable of executing culling operations in order to deal
with the minimum amount of primitives in a scene during
the rendering stage, as possible. To do that, we propose
to execute the culling by combining the paradigms based
on viewing-frustum, back-face culling and occlusion culling.
To our knowledge, this approach is new in comparison to
existing approaches and there is no way to do a comparison
because the objective is different of those (real time and
interactive visualization through the web, of massive and
large scenarios). To our belief, this approach to occlusion
culling is also different from previous known works. Results
have shown a substantial improvement over the traditional
approaches if applied separately. Regarding the applicability,
this novel approach can be used in devices with no dedicated
processors or with low processing power or to provide data for
visualization through the internet. In our lab, it will be applied
in virtual museums applications.

In the very short, we intend to use the Ja
1 structures adaptive

feature to improve the preprocessing stage. That is, by having
smaller blocks in certain regions of the scene, there will be
a higher amount of fully filled face blocks which makes the
adjacent block occlusion culling works better. Thus, with the
better occlusion culling, there will be less overestimation.

We believe that this visualization structure is not only
useful in the context of real-time rendering, but also in other
applications such as online virtual environment application. In
this case, the data from the environment is obtained on-line,
this can permit the application to send the right data for the
user to view without the need of sending the whole scene.
With this in mind, we would also like to apply our technique
in this scenario.

2015 XLI Latin American Computing Conference (CLEI)

REFERENCES

[1] A. Castelo, L. G. Nonato, M. Siqueira, R. Minghim, and G. Tavares,
“The j1a triangulation: An adaptive triangulation in any dimension,”
Computer & Graphics, vol. 30, no. 5, pp. 737–753, 2006.

[2] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand, “A
survey of visibility for walkthrough applications,” IEEE Transactions
On Visualization and Computer, vol. 9, no. 3, 2003.

[3] C. B. Jones, “A new approach to the ’hidden line’ problem,” The
Computer Journal, vol. 14, no. 3, pp. 232–237, 1971.

[4] J. H. Clark, “Hierarchical geometric models for visible surface algo-
rithms,” Commun. ACM, vol. 19, no. 10, pp. 547–554, Oct. 1976.

[5] D. Meagher, “Efficient synthetic image generation of arbitrary 3-d
objects,” IEEE Computer Society Conference on Pattern Recognition
and Image Processing, pp. 473–478, 1982.

[6] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr., “Towards image realism
with interactive update rates in complex virtual building environments,”
SIGGRAPH Comput. Graph., vol. 24, no. 2, pp. 41–50, Feb. 1990.

[7] S. J. Teller, “Visibility computations in densely occluded polyhedral
environments,” Berkeley, CA, USA, Tech. Rep., 1992.

[8] S. J. Teller and C. H. Séquin, “Visibility preprocessing for interactive
walkthroughs,” SIGGRAPH Comput. Graph., vol. 25, no. 4, pp. 61–70,
Jul. 1991.

[9] N. Greene, M. Kass, and G. Miller, “Hierarchical z-buffer visibility,” in
Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, ser. SIGGRAPH ’93. New York, NY, USA:
ACM, 1993, pp. 231–238.

[10] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer
graphics: principles and practice (2nd ed.). Addison-Wesley Longman
Publishing Co., Inc., 1990.

[11] B. Garlick, D. D. Baum, and J. Winget, “Interactive viewing of large
geometric data bases using multiprocessor graphics workstations,” pp.
239–245, 1990.

[12] S. Kumar, D. Manocha, W. Garrett, and M. Lin, “Hierarchical back-
face computation,” in Proceedings of the eurographics workshop on
Rendering techniques ’96. London, UK: Springer-Verlag, 1996, pp.
235–244.

[13] U. Assarsson and T. Mller, “Optimized view frustum culling algorithms
for bounding boxes,” Journal of Graphics Tools, vol. 5, pp. 9–22, 2000.

[14] M. Slater and Y. Chrysanthou, “View volume culling using a proba-
bilistic cashing scheme,” ACM Virtual Reality Software and Technology
VRST’97, pp. 71–78, 1997.

[15] J. Bittner, O. Mattausch, P. Wonka, V. Havran, and M. Wimmer,
“Adaptive global visibility sampling,” in ACM SIGGRAPH 2009 Papers,
ser. SIGGRAPH ’09, 2009, pp. 94:1–94:10.

[16] A. Chandak, L. Antani, M. Taylor, and D. Manocha, “Fastv: From-point
visibility culling on complex models,” in Proceedings of the Twentieth
Eurographics Conference on Rendering, ser. EGSR’09, 2009, pp. 1237–
1246.

[17] F. Tian, W. Hua, Z. Dong, and H. Bao, “Adaptive voxels: Interactive
rendering of massive 3d models,” Vis. Comput., vol. 26, no. 6-8, pp.
409–419, 2010.

[18] L. Antani, A. Chandak, M. Taylor, and D. Manocha, “Fast geometric
sound propagation with finite edge diffraction,” Technical Report TR10-
011, University of North Carolina at Chapel Hill, 2010., Tech. Rep.,
2010.

[19] K. Bala, J. Dorsey, and S. Teller, “Radiance interpolants for accelerated
bounded-error ray tracing,” ACM Trans. Graph., vol. 18, no. 3, pp. 213–
256, Jul. 1999.

[20] ——, “Interactive ray-traced scene editing using ray segment trees,” in
Proceedings of the 10th Eurographics conference on Rendering, ser.
EGWR’99, 1999, pp. 31–44.

[21] D. Cohen-or and A. Shaked, “Visibility and dead-zones in digital terrain
maps,” Computer Graphics Forum, vol. 14, pp. 171–180, 1995.

[22] D. Cohen-Or, E. Rich, U. Lerner, and V. Shenkar, “A real-time photo-
realistic visual flythrough,” IEEE Transactions on Visualization and
Computer Graphics, vol. 2, pp. 255–265, 1996.

[23] S. Parker, W. Martin, P. pike J. Sloan, P. Shirley, B. Smits, and
C. Hansen, “Interactive ray tracing,” in In Symposium on interactive
3D graphics, 1999, pp. 119–126.

[24] N. Greene and M. Kass, “Error-bounded antialiased rendering of com-
plex environments,” in Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, ser. SIGGRAPH ’94.
ACM, 1994, pp. 59–66.

[25] N. Greene, “Occlusion culling with optimized hierachical z-buffering,”
in In ACM SIGGRAPH Visual Proceedings, 1999.

[26] ——, “A quality knob for non-conservative culling with hierarchical
z-buffering,” 2001.

[27] D. Luebke and C. Georges, “Portals and mirrors: simple, fast evaluation
of potentially visible sets,” in Proceedings of the 1995 symposium on
Interactive 3D graphics, ser. I3D ’95. ACM, 1995, pp. 105–106.

2015 XLI Latin American Computing Conference (CLEI)

