
Improving Quality Model Construction Through
Knowledge Reuse

Juan Pablo Carvallo1, Xavier Franch2, Carme Quer2

1Universidad de Cuenca, Ecuador
pablo.carvallo@ucuenca.edu.ec

2Universitat Politècnica de Catalunya-Barcelona Tech (UPC)
{franch, cquer}@essi.upc.edu

Abstract. Software quality models provide a framework to measure and
evaluate software quality of software systems. They are the basis upon which
classify requirements and may be eventually used to guide the quantification of
these requirements, especially non-functional requirements. Lots of approaches
for building quality models have been proposed in the last decades, but still
their reuse along different projects is a challenge. In this paper we present sev-
eral types of knowledge repositories and reuse processes to bridge this gap. The
approach implements the idea of software factory and uses some well-known
standards and notations like ISO/IEC 25010 as quality standard and the i*
framework to codify knowledge patterns. We will illustrate how this reuse-
based approach helps in obtaining composite quality models for systems that in-
tegrate several software components with an individual quality model each.

1 Introduction

A quality model (QM) is “the set of characteristics and the relationships between
them which provide the basis for specifying quality requirements and evaluating qual-
ity” [1]. A QM provides a taxonomy of software quality factors and also metrics for
evaluating the quality of a software system used later e.g. in requirements elicitation.
Once available, requirements over the system may be stated with respect to the QM.

Lots of approaches for building QMs have been proposed in the last decades [2-
10], but still their reuse along different projects is a challenge. In this paper we pre-
sent several types of knowledge repositories and reuse processes to bridge this gap.
The approach implements Basili et al.’s vision of software factory [11] and uses some
well-known standards and notations like the ISO/IEC 25010 [1] as quality standard
and the i* framework [12] to represent system context and codify knowledge patterns,
among other things. Specifically, we will illustrate how this reuse-based approach
helps in obtaining QMs for systems that integrate several software components for
which individual QMs have been constructed.

The rest of the paper is structured as follows. Section 2 presents the required back-
ground. Section 3 introduces the artefacts that we have defined to support knowledge
reuse in software quality models construction. Section 4 presents the knowledge reuse
cycles defined for each of these repositories. Section 5 discusses the related work and
finally Section 6 gives some conclusions.

2 Quality Models for Composite Software Systems

We describe below the activities necessary for the construction of a QM for a soft-
ware system that integrate software components, which we call composite software
system in the rest of the paper. These systems are characterized by: the embracement
of distinct functionalities, which are not covered by a single type of component and
their need of general-purpose components as for instance anti-virus and compression
tools, directory services, etc; This compositional nature requires an approach to QM
construction different than the usual monolithic one. In [13][14] we have explored
this issue and proposed four activities that conform the resulting QM construction
process (see the top part of Fig. 1):
• Activity 1. Analyzing the context of the system. The organizational elements that

surround the system are identified, as well as other external software systems
which the system interacts with. Relationships among the system and the context
are established. We propose to model the result of this activity as an i* Strategic
Dependency (SD) model, where there is a distinguished actor representing the sys-
tem, and a set of contextual actors with which the system maintains one or more re-
lationship dependencies.

• Activity 2. Decomposing the system into subsystems. The system is decomposed
into several subsystems each offering well-defined services and with a well-
defined goal. The subsystems are identified with the help of the results coming
from Activity 1. We propose to model the result of this activity as an i* SD model
that decomposes the one obtained in Activity 1, in which the system actor has been
decomposed in several actors (one per subsystem) and the dependencies with the
context have been reconsidered and assigned or decomposed to dependencies re-
garding subsystems.

• Activity 3. Building individual QMs for software components that could cover the
services and the goal of each subsystem. In this activity an existent method for the
construction of QMs for components of a specific software domain has to be ap-
plied. In our case, we propose to use the IQMC method that facilitates the con-
struction of an ISO/IEC 25010-compliant QM [15]. The result of this activity is a
set of individual QMs.

• Activity 4. By composing the individual QMs according to [16], it is possible to
arrive to the QM of the system. The result is an ISO/IEC 25010-compliant QM for
the whole system that gives a single and uniform vision of the system quality.

3 Knowledge Repositories

According to Basili et al. [11] “improving the software process and product requires
the continual accumulation of evaluated experiences (learning) in a form that can be
effectively understood and modified (experience models) into a repository of integrat-
ed experience models (experience base) that can be accessed and modified to meet the
needs of the current project (reuse)”. The development of this notion resulted in what
the authors call the experience factory (see Fig. 2): a logical and/or physical infra-
structure aimed at the storage and reuse of all sorts of knowledge (experience and
products) resulting from the activities performed in software lifecycle.

Fig. 1. Activities and knowledge repositories

In Fig. 2 we may see that the project organization and the experience factory are
two separated entities, each with its own mission; the first one is intended to develop
and deliver software, whilst the second one is thought to supply on demand the
knowledge available from previous experiences. The experience factory processes the
information provided by the project organization (e.g. product development and con-
textual characteristics, data and diverse models), and returns direct feedback of
knowledge relevant to each project activity. The experience factory is also responsible
for packaging and storing this information in an experience base, from where it can be
later accessed, making it available to future projects. In the proposed cyclic approach,
the experience base is in continuous growth to accommodate new and/or update
knowledge obtained as new experiences are performed.

The logical separation of the project development cycle (performed by the project
organization) from the systematic learning and packaging of reusable experiences
(performed by the experience factory), requires some feedback mechanisms to be
implemented in order for these processes to communicate and support each other. To
achieve these purposes, two feedback cycles have been defined:

• The project feedback cycle (control cycle) is the feedback that is provided to the
project during its execution phase.

• The corporate feedback cycle (capitalization cycle) is the feedback that is provided
to the organization with the main purpose of accumulating reusable experience in
the form of software artefacts that are applicable to other projects and are, in gen-
eral, improved based on the performed analysis.

QM1

QM2
QM4

QM3

C1

C2

C3

C4

System

3. Construction of individual
quality models

System

Human
Actors

Organization
Actors

Hw. and Sw.
Actors

D

D D

C1

C2

C3
C4

2. Decomposition into subsystems

System Quality Model

System

Human
Actors

Organization
Actors

Hw. and Sw.
Actors

1. Analysis of the context

Software domains
taxonomy

Contextual patterns
repository

4. Composition into a system
quality model

Contextual models
repository

Attribute patterns
repository

Experience Base

C0

C3C1 C2

D2D1 D3

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity

Composite quality models repository Layer 2

Layer 1

Fig. 2. The experience factory

The QM construction process presented in this paper also aims at improving the re-
turn on investment by organizing and reusing the knowledge available from previous
experiences. Five artifacts have been identified to support knowledge reuse:
• A contextual patterns repository which reflects the most usual interactions among

systems and their context.
• A contextual models repository which contains contextual models defined in past

projects for the software components that compose the target systems.
• A software domains taxonomy that organizes QMs built in past projects for the

domains of the subsystems in which the systems are decomposed.
• An attribute patterns repository which contains quality attributes that can be re-

used as new QMs are constructed.
• A composite quality models repository which contains system QMs, for being re-

used in case new projects that address a system with the same goals could be ap-
plied.

The existence of these repositories and the way in which they interact with the activi-
ties largely resemble Basili et al.’s experience factory. On the one hand, the five re-
positories define an experience base, which makes the knowledge gathered in past
experiences available for the support of new projects (control cycle). On the other
hand, each of the activities of the produces a set of deliverables which can be pack-
aged and stored in the experience base for their further reuse (capitalization cycle).
The process activities interact with the experience base at different levels, either to
gather the specific knowledge relevant for them, or to update/extend the knowledge
stored with the new deliverables produced. Fig. 1 depicts by means of arrows the
existing synergies among activities and repositories. The next sections present each
repository in the experience base except for the composite quality models repository
that will be introduced in the description of Activity 4 in Section 4.

3.1 Contextual Patterns Repository

This repository is used in Activity 1, during the identification of the contextual actors
and their dependency relationships with the system actor. For each pattern, the quality
factors of the ISO/IEC 25010 that apply may be stated.

Patterns are described using the style of Gamma et al. [17]:

• The problem solved by a pattern is expressed as a set of high-level requirements,
which will be goals for the system if the pattern is considered.

• The context is the same for every pattern in the catalogue, since all of them are
patterns to apply in the analysis of the context of a system.

• The solution will be described as an i* SD model. The pattern provides a scheme
of a general solution that must be specialized for its application in a system.

• Consequences are non-functional quality factors (which we represent as ISO 25010
subcharacteristics) affected positively or negatively by the use of the pattern.

Fig. 3 shows some examples of patterns, interesting for multiple systems. Let’s con-
sider the Full Availability pattern. We would select this pattern from the repository in
case the composite system considered has the requirement “The system must offer
full availability”. It identifies two contextual actors needed to provide full availability
to a system, namely a system administrator and a system user, and the dependencies
among these actors and the system. The System User depends on the System to obtain
the Full Availability softgoal. On the other hand, the System depends on the System
Administrator for executing the Recovery From the Scratch in case the system fails.
The consequences of applying the pattern are the improvement of the fault tolerance
and the recoverability of the system-to-be (‘+’ sign), while harming performance (‘-‘).

A contextual model where these patterns were used is in the contextual model of a
Mail Server system (see Fig. 5). The three patterns of Fig. 3 were retrieved and used.
The Tool Administrator actors and some of the dependencies of the system with this
actor were identified thanks to the Easy Administration and Fine Tuning patterns.
Other contextual actors and dependencies were identified from several sources of
information that could be reviewed to support this process (e.g. organizational charts).

3.2 Contextual Models Repository

There are subsystems with well-defined services and goals that appear over and over
in different systems. The contextual models of the software components that may
cover the functionality of the subsystems are the models in this repository, and can be
reused in the construction of new system QMs where these components are required.

Fig. 3. Samples of contextual patterns.

This repository is used in Activity 2, during the decomposition of the system in
subsystems. Activity 2 ends up with a system model, which includes its internal sys-
tem actors or subsystems, its contextual actors and the internal (system) and external
(contextual) dependencies among them. A methodological hint to improve this pro-
cess is to deal with each subsystem as an independent system, and to construct a con-
textual model for each subsystem (following the same techniques than in Activity 1).

Once the contextual models of each subsystem exist, taking into account the de-
pendencies in each model, the decomposition of the contextual model of the system in
subsystems and relationships among them with respect to the system context can be
done. In Fig. 4 there are two contextual models of two common subsystem: a Routing
Tool (RT) and a Directory Service Tool (DS). They were used in the Mail Servers
system to enrich the system model being developed (see an excerpt in Fig. 5).

Fig. 4. Samples of contextual models of potential subsystems.

Fig. 5. Excerpt of the Mail Server System model.

3.3 Taxonomy of Software Domains

The domains of software components available in the market can be in a repository
organized as a taxonomy of scopes, i.e. categories and domains (see Fig. 6).

RTA Easy
Administration

Good
Performance

RT

DNS

Routing
Status

Package
Routed

Efficient
Routing

Forbid
Unauthorized

Routing

Connectors

Up-to-Date
Management of
Routing Tables

Fwll

Protect From
Unauthorised

Access

Destination
IP Address

RTU

Prevent from
Unauthorized Access

to Resources

DSA

Support of All
Types of

Resources

Connectors

Efficient
Resources

Organization

Easy
Administration

Fwll

Protect From
Unauthorised

Access

DS
Resource

Resource
Accessed

Easy Resource
Localization

Centralized &
Complete Control

of Resources

DSU

Routing Tool Environmental Actors
RT: Routing Tool
DNS: Domain Name System
RTA: Routing Tool Administrator
RTU: Routing Tool User
Fwll: Firewall

Directory Service Environmental Actors
DS: Directory Service
DSA: Directory Service Administrator
DSU: Directory Service User
Fwll: Firewall

Environment System

Connectors

Tools
Adm.
(RTA)

Easy
Administration

Good
Performance RT

DNS

Routing
Status

Messages
Routed

Efficient
Routing

Forbid
Unauthorized

Routing

Connectors

Up-to-Date
Management of
Routing Tables

Fwll

Destination
IP Address

MS

Messages
Filtered

Accurate
Message
Filtering

Update Filters
and Rules

AST

Easy
Administration

Tools
Adm.

(ASTA)

Protect From
Unauthorised

Access

Protect From
Unauthorised

Access

Connectors

Data Backed-
up/Restored

Complete
Backups

Connectors

BRT

Easy
Administration

Contingenc
y Plan

Tools
Adm.

(BRTA)

Messages
Compressed/

Uncompressed

Maximum
Compression

Connectors

Easy
Administration

Tools
Adm.

(DCTA)
DCT

Good
Performance

Connectors

ENVIRONMENTAL
ACTORS
AVO: Anti-Virus Organization
CA: Certification Authority
DNS: Domain Name System
Fwll: Firewall
Tools Adm. (ASTA,RTA,AVTA,
BRTA,DETA,DCTA): Tools Administrator, (Anti-
Spam Tool, Routing Tool, Anti-Virus Tool, Backup
and recovery tool, Data Encryption Tool, Data
Compression Tool).

SYSTEM ACTORS
AST: Anti-Spam Tool
AVT: Antivirus Tool
BRT: Backup & Recovery Tool
DCT: Data Compression Tool
DET: Data Encryption Tool
RT: Routing Tool

Data Compressed
Without loss of

information

System Data
Backed-up/
Restored

DS

• Software domains are grouped in the taxonomy into categories that in their turn
can be clustered. A category is split into subcategories or domains. Domains ap-
pearing in the taxonomy are atomic and may not be further decomposed.

• QMs for each scope are attached to the taxonomy. At the root of the hierarchy, we
find the ISO/IEC 25010 QM, whilst the QMs in the rest of scopes contain special-
ized quality factors specific for components belonging to that category or domain.
Quality factors in the QM for a scope are propagated to the QMs of its sub-scopes.

The taxonomy may be used during activities 2 and 3. In Activity 2 it facilitates the
identification of subsystem during the decomposition of the system. In Activity 3 it
acts as a repository of individual QMs that are already constructed.

Using the goals of a subsystem as search criteria, the taxonomy of software do-
mains is explored. In some cases, complete QMs are found and prepared to be used in
Activity 4 during the composition of individual QMs to obtain the system QM. In the
worst case, the node of the software domain is not found in the taxonomy or the node
of the software domain does not contain a QM constructed during previous projects.
If it is not present, the software domain will be included in the taxonomy and the new
constructed QM is added to the taxonomy. In order to avoid unnecessary work the
QM used as starting point to construct the QM has to be the one in the closest catego-
ry or domain in the taxonomy, or in the worst case the ISO/IEC 25010 QM.

Fig. 6. Software Domains Taxonomy Fig. 7. Attribute Patterns Repository

3.4 Attribute Patterns Repository

Our experience in the construction of QMs has revealed that ”chunks” of quality fac-
tors emerge continuously, either locally when constructing a QM for a particular sys-
tem actor (Local Quality Patterns) or across QMs belonging to different system actors
(Cross Domain Quality Patterns). We call these chunks attribute patterns (see Fig. 7).

These patterns may be used in activities 3 and 4. In Activity 3, they are used if new
QMs, not included previously in the taxonomy of domains, are constructed.

Local Quality Patterns (LQP). There are quality factors included in the QM of a
system actor that share a similar decomposition. The decomposition of one of these
quality factors can be made abstract and defined as a LQP. The application of one of
these patterns is possible adapting it to different parts of the QM. LQPs include, if
necessary, variable labels that are to be replaced by appropriated values each time that
they are applied. This happens in QMs of different components, specifically in

Category
C0

Category
C1

Category
C2

Domain 1 Domain 2 Domain 3

QM-C0

QM-C1

QM-D1

QM-C2

QM-D3

QM-D2

CDQP

Software Domains

LQP

LQP

LQP

LQPLQP

LQP

LQP CDQP

LQP

stating the existence of functionalities related to the management of some domain
object or entity. An example of LQP is a quality factor entity management (see Fig. 8)
that can be used to decompose the Functional Completeness subcharacteristic of a
QM. In the QMs of most software domains the functionalities for the management of
objects in the domain context is necessary. For instance, in a Library Loan Manage-
ment System this functionality is necessary for the management of books and users.
The “entity” variable will be substituted during the application of the pattern by the
name of the object class to be managed. The quality factor in the LQP is decomposed
into sets of basic attributes representing actions (e.g. addition, update, deletion, etc.),
security restrictions (e.g. on the fields that may be updated, the operations allowed,
etc.) or even some behavioral settings (e.g. regarding attributes, etc.). In the IP Te-
lephony system, this LQP was applied for stating quality factors about the manage-
ment of folders and subfolders and agenda structured under the suitability subcharac-
teristic of the mail server quality model of the Mail Server system.

Cross Domain Quality Pattern (CDQP). In other cases, common quality factors can
be identified across QMs of different system actors. CDQP may include attributes but
also other QM elements such as higher-level (sub) characteristics, the relationships
among them and generalised metrics. As a matter of fact, since there are no limits on
the number of elements or layers in the patterns hierarchy, they range from simple
branches of low-level quality attributes, to whole QMs.

As an example, security attributes such as encryption algorithms, certification sys-
tems, security protocols or even system politics are required in many domains, and
also were required in the IP Telephony system. Once identified, these CDQP may be
reused directly, by incorporating their decomposition into new QMs or as a checklist
to identify and/or validate the appropriated attributes required for them. In Fig. 9 the
Security Cross Domain Quality Pattern is included.

 Solution

En
tit

y
M

an
ag

em
en

t

N
o

sp
ec

ifi
c

do
m

ai
n

LQ
P

En
tit

y
m

an
ag

em
en

t f
un

c-
tio

na
lit

y
de

co
m

po
si

tio
n

{Entity Name}
Management

Actions

Attributes

Form Fields

Validations

Automatic
Key

Genration

Restrictions

Add {Entity Name}
Modify {Entity Name}
Delete {Entity Name}

Prefix
Suffix

Start Value

Automatic/Transparent
Primary Key Keneration

Forbiden Attributes
Set of Attributes

Attribute Input Order
Add Attributes

Delete Attributes
Hyde Attributes

Attribute Input Format
Attribute Data Types

Suitability
Related

Attributes

Tailorability
Related

Attributes

Basic Actions

Advanced Actions

View {Entity Name}
List {Entity Name}

Other

Step

Attribute Level
Validations

Form Level Validations

Defined Shortkeys

User ang Group
Restrictions

Access Control List

 N
am

e

A
pp

lic
at

io
n

co
nt

ex
t

Ty
pe

 o
f p

at
te

rn

Pr
ob

le
m

Fig. 8. Sample of the Entity Management Local Quality Pattern

Se
cu

rit
y

H
ie

ra
rc

hy

N
o

sp
ec

ifi
c

do
m

ai
n

C
D

Q
P

Problem
Decomposition of the ISO/IEC Security characteristic

Solution

 N
am

e

A
pp

lic
at

io
n

co
nt

ex
t

Ty
pe

 o
f p

at
te

rn

Fig. 9. Sample of the Security Cross Domain Quality Pattern

4 System Quality Model Construction as an Experience Factory

The repositories in the experience base are intended to support all the activities of
the construction process (as Fig. 1 shows). Because of this, it describes several feed-
back cycles. Although each of these cycles involve different repositories and are used
for different purposes, they all contain 4 basic phases:

Phase 1: Exploration (E). Several information sources (the context of the system,
project requirements, deliverables of other activities, etc.) are reviewed and analyzed
in relation to the objectives of the activity been conducted. The knowledge gathered
and structured in this phase is used as input in the production of the deliverables of
the activity (contextual models in Activity 1, system models in Activity 2, system
actor’s QMs in Activity 3 and the final system QMs in Activity 4).

Phase 2: Localization (L). The experience base is searched for knowledge rele-
vant for the enrichment and/or production of the deliverables of the activity. The re-
positories shall be organized in such a way that relevant pieces of knowledge can be
easily found and retrieved. Except for Activity 1, the main source for the identifica-
tion of the localization criteria is the deliverables of the preceding activities.

Phase 3: Construction-Tailoring (CT). The deliverables being produced are en-
riched with the knowledge elements retrieved in Phase 2, taking into account the
characteristics of the domain and the type of requirements of the project. Therefore,
just those elements related with the requirements of the system will be added. On the
other hand, the already-existing elements that do not apply will not be considered.

Phase 4: Refactoring (R). For enhancing future reuse, once the deliverables are
built, the repositories in the experience base should be updated. The actions to be
taken are many: to reorganize the knowledge contained in the repositories, to leave
out some pieces of knowledge too constrained to the ongoing project, or even to com-
plete the deliverables beyond the project requirements.

Security

Provided by
Third Parties

Provided by
the

Application

Stored Data

Transmitted
Data

Access Rights
Supported Group Restrictions
Supported User Restrictions

Login and password
Execution control lists (ECL)
Access Control Lists (ACL)

Application
Security

Data Security

Certification System

Access Rights
Supported Group Restrictions
Supported User Restrictions

Encryption algorithm

Trust Relationships

Encryption Key Length

Access Rights
Supported Group Restrictions
Supported User Restrictions

Login and password
Execution control lists (ECL)
Access Control Lists (ACL)

Data Encryption
Encryption algorithm

Encryption Key Length

Secure Transfer Protocols

Secure Web transfer protocols

The four proposed phases (figs. 10 to 12) can be combined to define a knowledge
reuse cycle for each of the activities of the process:
• Activity 1. (E) The identification of the initial contextual actors and dependencies

relies on several sources of information (e.g. organizational charts, workflow pro-
cesses, etc.). (L) The contextual pattern repository is searched using criteria identi-
fied in Exploration (e.g., type of organization). (CT) The contextual actors and de-
pendencies identified so far are used to construct the i* SD system context model.
New information emerging in this process can be used as additional criteria to lo-
cate patterns relevant to the case. (R) The resulting contextual model is explored
for possible recurring situations that can be identified, abstracted as contextual pat-
terns and stored in the contextual patterns repository.

Fig. 10. Activities 1 (left) and 4 (right) of the knowledge reuse cycle. The odd ordering of the

activities is for convenience of the drawing.

• Activity 2. (E) Activity 1 can be considered the exploration phase of Activity 2;
the contextual model produced in Activity 1 is the departing element used in the
construction of the system model in Activity 2. (L) This phase includes two search
events. First, the internal goals of the system are used as criteria to search the tax-
onomy and eventually locate the suitable software domains to cover them, that be-
come subsystem actors. Second, contextual models of these subsystem actors are
retrieved from the contextual models repository and used to discover new subsys-
tem and/or contextual actors and dependencies that have been previously omitted.
(CT) Five steps are needed to construct the new i* SD model from the one ob-
tained in Activity 1. In them, the needed subsystem actors, identified in the locali-
zation phase are used to decompose the system and the dependencies on the con-
textual actors redefined and or/decomposed regarding these subsystems. (R) Dur-
ing decomposition subsystems that do not have a corresponding software domain

Activity 1: Analysis of the context

Exploration of
the context of

the system

Provides criteria to

?

Contextual
actors and

dependencies

Is used to
identify

Ph
as

e1
: D

om
ai

n

E
xp

lo
ra

tio
n

Ph
as

e
3:

 E
nv

iro
nm

en
ta

l
M

od
el

 C
on

st
ru

ct
io

n
-

Ta
yl

or
in

g

Ph
as

e
4:

 R
ef

ac
to

rin
g

- s
to

ra
ge

Identifies Initial

Used to build

Ph
as

e
2:

 L
oc

al
iz

at
io

n

Search the contextual
patterns repository

Context Model

Provides relevant

Contextual
patterns

System

Provides additional criteria to

Used to build

Enriched contextual
patterns repository

New contextual
Patterns

To be
stored in

Activity 4: Composition into a system quality model

Quality models
resulting from activity 3

Is stored
in

Ph
as

e1
:

 E
xp

lo
ra

tio
n

Ph
as

e
3:

 C
om

po
si

te
 Q

M

C
on

st
ru

ct
io

n
- T

ay
lo

rin
g

Ph
as

e
4:

 R
ef

ac
to

rin
g

- s
to

ra
ge

Used to
enrich

Ph
as

e
2:

 L
oc

al
iz

at
io

n

Composite Quality
Model

System quality
features are

the criteria to

Are the base to
build

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ityto identify

Attribute
Patterns

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity

Search the Attribute
Patterns repository

Composite quality
models repository

in the taxonomy and contextual models repository of the experience base will arise.
On the other hand, existing contextual models on that repository will be updated
due to changes from its last use. This will result in new software domains and new
or updated contextual models that will enrich the experience base.

• Activity 3. (E) Activity 2 can be considered the exploration phase of Activity 3.
We have also included to this phase the step 0 of the IQMC method [15], aimed at
the study and understanding of the software domains of each subsystem actor; this
is done constructing a conceptual model which helps to understand each software
domain. (L) Using the goals of subsystem actors and the concepts included in con-
ceptual models, the taxonomy is explored to identify departing QMs modelling the
quality of each subsystem actor. (CT) The IQMC method is used to tailor the de-
parting QMs obtained in the previous phase and to construct new QMs not found in

Fig. 11. Activity 2 of the knowledge reuse cycle.

STEP 3. Analysis of the
impact of system actors

Search the software
domains taxonomy

C0

C3C1 C2

D2D1 D3

STEP 2. Identification of
the internal system actors

Search the contextual
models repository

Goals covered by
software domains

3
to

identify

STEP 4. Definition of an SD
system model

STEP 5. Refinament of
Internal Dependencies

Are used in

6
to

identify

System actors
are the criteria to

Ph
as

e1
: E

xp
lo

ra
tio

n
Ph

as
e

3:
 S

ys
te

m
 M

od
el

 C
on

st
ru

ct
io

n
- T

ay
lo

rin
g

Ph
as

e
4:

 R
ef

ac
to

rin
g

- s
to

ra
ge

Ph
as

e
2:

 L
oc

al
iz

at
io

n

Context Models

Activity 2: Decomposition Into subsystems

Is the basis for

STEP 1. SR decomposition
of the System

A2

A3

A1

A4

A2

A3

A1

A4

A2

A3

A1

A4

Are used in

Is used to identify

New context models and
software domains

A4

A3

C0

C3C1 C2

D1 D3 A3

A4

D2

Enriched contextual
models repository

Enriched software
domains taxonomy

10

To be
stored in

7

87

9

System goals are
the criteria to

A2

A3

A1

System

SD context model
resulting from activity 1

1

2

4

5

Fig. 12. Activity 3 of the knowledge reuse cycle.

the taxonomy. All the way through this process, relevant attribute patterns re-
trieved from attribute patterns repository are used to enrich the QM hierarchy with
the quality factors included on them. (R) Once defined the individual quality mod-
els of subsystem actors, removing context-dependent parts of the resulting QMs in
order to obtain generic QMs that can be reused in future experiences allows to add
these new QMs or to update existing QMs to be used in next projects.

• Activity 4. (E) Activity 3 can be considered the exploration phase of Activity 4.
(L) In this phase, attribute patterns relevant for the composite QM being construct-
ed are retrieved from the attribute patterns repository. The main source of criteria
to locate these patterns is the quality factors identified during composition of QMs.
(CT) By applying the combination patterns introduced in [16], the individual QMs
are combined into a system level QM. Relevant attribute patterns identified in the
localization phase are used to enrich the resulting QM. The composite QMs is the

(-)(+) (D)(+)

Metricsƒƒ

ISO/IEC 25010
Characteristics and
Subcharacteristics

Relationships
Among Quality
Entities

Attributes

STEP 6 ƒ ½

STEP 5

STEP 4

STEP 1

STEP 2

STEP 3

Hierarchy of
Subcharacteristics

Decomposition of
Derived Attributes

Step 0: Defining the software domain

Added
ModifiedInitial
Deleted

DerivedBasic

abc abc abc abcabc abc abc abc ½ƒ ½

(-)(+) (D)(+)

Domain
Exploration

are the
base for

Constructed by

?

Conceptual Model

Resulting QM is the
base for

New Refactored QM

Ph
as

e1
: E

xp
lo

ra
tio

n
Ph

as
e

3:
 Q

ua
lit

y
M

od
el

 C
on

st
ru

ct
io

n
- T

ay
lo

rin
g

Ph
as

e
4:

 R
ef

ac
to

rin
g

- S
to

ra
ge

QM

QMQM QM

QMQM QM

Search the software
domains taxonomy

C0

C3C1 C2

D2D1 D3 to
identify Departing

QM

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity

to
identify

Used to enrich

Attribute
Patterns

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity

S e c ur it y

P r ov i de d by
T h ir d P a rt ie s

P r ov i de d by
th e

A p p li ca t io n

S to r e d D a ta

T ra n s mi tt ed
D a ta

A p p li ca t io n
S e c ur it y

D a ta Se c u r ity

Provides criteria to

Search the attribute
Patterns repository

Activity 3: Construction of individual quality models

System actors
are the criteria to

A2

A3

A1

A4 Provides system
actors for

Used to
buid a

Ph
as

e
2:

 L
oc

al
iz

at
io

n

4 Provides criteria to

New ISO/IEC 25010- Based Quality Model

Provides
criteria to

To be
stored in

SD system model resulting
from activity 2

Enriched QM Repository (in
software domains taxonomy)

final deliverable of the construction process. (R) Composite QMs are stored to-
gether with the related contextual and system models obtained in Activities 1 and 2
in the composite quality models repository.

Thus, the experience base is structured into two layers. The first one containing the
four repositories introduced in Section 3 (Fig. 1, Layer 1), that manage knowledge
related to specific software domains, and the second one containing the composite
QMs repository (Fig. 1, Layer 2) that manages knowledge at a composite system lev-
el. This second layer induces a second reuse cycle where depending on the particular
requirements of a new composite system with similar goals, it is possible to use the
composite QMs repository as departing repository of system models and composite
QMs, that will be used once refactored to meet the particular needs of the new system.

5 Related Work

Our work is clearly inspired in Basili’s experience factory [11] (see Section 4), and
can be considered an application of that approach to quality models construction.
Most of the works on quality models, even the most recent ones, focus on quality
models elements, structure and properties; as far as we know, none of them propose
artifacts and knowledge reuse cycles as the ones presented here. The new existing
approaches that mention reuse deal about the adaptation of quality models on differ-
ent systems or projects [7][8][18] and thus they not provide a holistic version for their
construction as done in this paper. Only some of the elements that we present are
mentioned in other approaches. For instance, [19][20] include catalogues with de-
compositions of software quality attributes in relation to security or performance,
similar to LQPs and CDQPs introduced in section 3.4, so we have incorporated them.
Also some approaches about the definition and use of patterns in i* exist. Among
them, the closest proposals to ours are the works on social structures presented in
[21], where the authors propose a set of social patterns, drawn from research on coop-
erative and distributed architectures. However, the aim of this work is to propose
ontology for information systems, inspired by social and organizational structures.
Our work is intended to provide artefacts to support knowledge reuse and improve
software quality construction. The scope is distinct, in their work patterns are intend-
ed to model different types of cooperation settings among organizations. In our ap-
proach, patterns are more detailed and intended to model particular software domains.

6 Conclusions

In this paper we have presented a reuse-oriented approach for the construction of
quality models (QMs) for composite software systems. This approach was validated
first in an academic setting and then used in industrial practices. If we refer to these
industrial cases, we have built QMs for 6 domains, e.g. document management tools,
workflow tools and IP telephony systems. To give an idea of size, the QM for the IP
telephony system case grew up to 1.832 quality factors distributed in a hierarchy of 5
layers and requiring 248 hours of work. The QM combined individual QMs for sub-
systems like a directory server, a billing tool, transmission and distribution networks,
etc. These numbers and complexity illustrate the need of structure approaches to QM
construction as the one we are proposing here. Percentages of reuse of our artifacts

grew up to 80% in the QMs for some of the mentioned system components, and also
interestingly enough, up to 40% of the attributes that were introduced in our reposito-
ries in the academic validation were reused in all the six industrial cases. At this re-
spect, we defined 31 cross-domain quality patterns and 7 local quality patterns includ-
ing 36 quality factors. These high percentages are a good indicator of the applicability
of our approach, which requires tough a more careful validation as future work.

Acknowledgements

This work has been funded by the Spanish project TIN2013-44641-P.

References

1. ISO/IEC Standard 25000. Software engineering — Software product Quality Requirements
and Evaluation (SQuaRE) — Guide to SQuaRE, 2005.

2. J.A. McCall et al. “Factors in Software Quality”. RADC TR-77-369, 1977.
3. T. Gilb. Principles of Software Engineering Management. Addison Wesley, 1988.
4. S. Keller, L. Kahn, R. Panara. “Specifying Software Quality Requirements with Metrics”.

Systems and Software Requirements Engineering - IEEE Tutorial, 1990.
5. R.G. Dromey. “A Model for Software Product Quality”. IEEE TSE 21, 1995.
6. F. Radulovic, R. García-Castro. “Extending Software Quality Models - A Sample in The

Domain of Semantic Technologies”. SEKE 2011.
7. M. Kläs, C. Lampasona, J. Munch. “Adapting software quality models: Practical challenges,

approach, and first empirical results”. EUROMICRO-SEAA 2011.
8. C. Lampasona et al. “Software quality modeling experiences at an oil company”. ESEM 2012
9. I.J. Jureta, C. Herssens, S. Faulkner. “A comprehensive quality model for service oriented

systems”. SQJ 17(1), 2009.
10. M. Oriol, J. Marco, X. Franch. “Quality Models for Web Services: A Systematic Mapping”.

IST 56(10), 2014.
11. V. Basili, G. Caldeira, H. Rombach. “The Experience Factory”. In Encyclopedia of Software

Engineering, John Wiley and Sons, 1994.
12. E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD, 1995.
13. J.P. Carvallo, X. Franch, C. Quer. “Determining Criteria for Selecting Software Compo-

nents: Lessons Learned”. IEEE Software, 24(3), 2007.
14. X. Franch, C. Quer, J.A. Cantón, R. Salietti. “Experience Report on the Construction of

Quality Models for Some Content Management Software Domains”. ICCBSS 2008.
15. X. Franch, J.P. Carvallo. “Using Quality Models in Software Package Selection”. IEEE

Software 20(1), 2003.
16. J.P. Carvallo, X. Franch, G. Grau, C. Quer. “COSTUME: A Method for Building Quality

Models for Composite COTS-Based Software Systems”. QSIC 2004.
17. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Ob-

ject-Oriented Software. Addison-Wesley, 1995.
18. A. Bianchi et al. “Quality models reuse: experimentation on field”. COMPSAC 2002.
19. M. Barbacci et al. “Steps in an Architecture Tradeoff Analysis Method: Quality Attribute

Models and Analysis”. CMU/SEI-97-TR-029, 1997.
20. L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements in Software

Engineering. Kluwer Academic Publishers, 1999.
21. A. Fuxman et al. “Information Systems as Social Structures”. FOIS 2001.

https://sede.micinn.gob.es/stfls/eSede/Ficheros/2014/Anexo_Preseleccionados_2013_PRD_Parcial_Proyectos_Excelencia.pdf
http://scholar.google.es/citations?user=tUW4hsAAAAAJ&hl=ca&oi=sra
http://scholar.google.es/citations?user=hiVbFKwAAAAJ&hl=ca&oi=sra
http://scholar.google.es/citations?user=7YIiCJoAAAAJ&hl=ca&oi=sra
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6068366
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6068366
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/f/Franch:Xavier.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Cant=oacute=n:Josep_A=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Salietti:Roser.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/iccbss/iccbss2008.html%23FranchQCS08
http://www.informatik.uni-trier.de/%7Eley/db/journals/software/software20.html%23FranchC03
http://www.informatik.uni-trier.de/%7Eley/db/journals/software/software20.html%23FranchC03
http://www.informatik.uni-trier.de/%7Eley/db/conf/qsic/qsic2004.html%23CarvalloFGQ04

	1 Introduction
	2 Quality Models for Composite Software Systems
	3 Knowledge Repositories
	3.1 Contextual Patterns Repository
	3.2 Contextual Models Repository
	3.3 Taxonomy of Software Domains
	3.4 Attribute Patterns Repository
	Local Quality Patterns (LQP). There are quality factors included in the QM of a system actor that share a similar decomposition. The decomposition of one of these quality factors can be made abstract and defined as a LQP. The application of one of the...
	Cross Domain Quality Pattern (CDQP). In other cases, common quality factors can be identified across QMs of different system actors. CDQP may include attributes but also other QM elements such as higher-level (sub) characteristics, the relationships a...

	4 System Quality Model Construction as an Experience Factory
	5 Related Work
	6 Conclusions
	Acknowledgements
	References

