
Providing software maintenance and evolution as a
service in a small organization: an approach based on

CMMI-DEV and CMMI-SVC

1Renata Moreira, 2Maurício Souza, 3Yguaratã Cavalcanti, 4Ana Cristina Rouiller,
1Alexandre Vasconcelos

1CIn – Centro de Informática, Universidade Federal de Pernambuco (UFPE)

2Departamento de Ciência da Computação da Universidade Federal de Minas Gerais
(DCC/UFMG) – Belo Horizonte – MG – Brasil

3SERPRO - Serviço Federal de Processamento de Dados
4DEINFO – Departamento de Estatística e Informática da Universidade Federal Rural de

Pernambuco (UFRPE) – Recife – PE – Brasil
{rtm, amlv}@cin.ufpe.br, mrasouza@dcc.ufmg.br, yguarata@gmail.com,

anarouiller@ufrpe.br

Abstract. This paper evaluates the adoption of CMMI-DEV and CMMI-SVC in
small organization for the improvement of software maintenance and evolution
process. A Software process improvement (SPI) initiative was performed in a
Brazilian small sized software product maintenance organization. We used the
Action-Research methodology to evaluate the viability, benefits and lessons
learned from the simultaneous adoption of these models. As a result we observed
that a set of Process Areas from CMMI-SVC were relevant for supporting the
management software maintenance and evolution activities, while Process Areas
from CMMI-DEV were relevant for supporting its technical aspects.

Keywords. Software Process Improvement, Software Maintenance and Evolu-
tion, Maturity Models, Process Capability Profile

1 Introduction

Software maintenance and evolution is a critical activity during software life cycle. It
is commonly described as the process of modifying a software system or component
after delivery to correct faults, improve performance or other attributes, or adapt to a
changed environment [1]. This concept has been evolved in order to consider the total-
ity of activities required to support the software at the lowest cost, in which some ac-
tivities start during its initial development but most activities are those following its
delivery [2]. Its costs ranges from 50% to 90% of total software life cycle costs [3][4].

Although software maintenance and software development share similarities, some
research suggest that a fundamental difference between them is the approach adopted
to handle their activities [5][6][7]. Development activities is mainly handled as a soft-
ware development project, planned to deliver results within an approved budget and

time frame, considering resources, costs/benefits and fixed deliverable objectives. In
contrast, to handle software maintenance activities, organizations must adapt to specific
characteristics as [3]:

• Maintenance requests (MRs) come in on an irregular basis, and cannot be accounted
for individually in the annual budget planning process;

• MRs are reviewed and prioritized, often at the operational level. Most do not require
senior management involvement;

• The maintenance workload is not managed using project management techniques
but, rather, queue management techniques;

• The size and complexity of each small MR are such that it can usually be handled
by one or two maintenance resources;

• The maintenance workload is user-services oriented and application-responsibility
oriented;

• Priorities can be shifted around at any time, and requests for corrections of applica-
tion software errors can take priority over other work in progress;

• Software maintenance is also labor intensive, with the majority of costs arising from
programmers' salaries.

Consequently, Software Process Improvement (SPI) efforts based on reference models
focused in the software development phase may not “fully” adapt to the characteristics
of software maintenance and evolution authors [5][6][7][8].

In this paper we describe the experience of adopting CMMI-DEV [9] and CMMI-
SVC [10] for a Software Process Improvement (SPI) project in a small organization
focused in the evolution and maintenance of software products. We believe that a ser-
vice-based approach for managing software maintenance and evolution activities can
be complemented with best practices for software process improvement for better re-
sults in the given scenario. As a result, we provide describe how the Process Areas from
these models contributed for the process improvement in the organization and the im-
provements observed. The expected contribution of this paper is providing insights for
SPI initiatives in similar industry scenarios.

The remainder of this paper is organized as follows: Section 2 describes the related
work; Section 3 describes the adopted methodology; Section 4 describes the investi-
gated organization; Section 5 describes the SPI initiatives in relation to the Process
Areas introduced; Section 6 discusses the evaluation of the study, discuss the research
questions results and raises theories; and, finally, Section 7 discuss some concluding
remarks.

2 Related Work

The research carried in [6] was the pioneer in envisioning a software maintenance
management strategy through a service perspective, adapting CMM with practices from
ITIL. In the meantime, many authors [7][8][5] proposed specific models to manage
maintenance. But we believe that the adoption of internationally recognized and up-to-
date maturity models are more easily adopted by the software industry.

Research about the adoption of maturity models for software maintenance is diverse.
Experience reports as [11] explore the application of maturity models oriented to soft-
ware development projects. Although the benefits of the adoption of software develop-
ment maturity models are recognized, we believe that those models do not cover the
specific characteristics of the maintenance and evolution activities, and can be comple-
mented with service oriented practices.

Araujo et al. [12] describes the adoption of MR-MPS-SV, a Brazilian reference
model for SPI within service oriented organizations, in a Brazilian organization called
ECO Sistemas. The organization had already been subject of a SPI program based in
MR-MPS-SW (for software development), and the authors point that the models can
be harmonized to enrich and organize different teams inside the organization. However
their experience focuses in the helpdesk organizational unit, and does not apply a ser-
vice

Jordão and Kalinowski [13] applied a survey to investigate the applicability of MR-
MPS-SV in organizations that have already adopted MR-MPS-SW practices, and thrive
for the improvements of its services of software development and maintenance. Results
show that MR-MPS-SV can provide benefits in productivity and quality. The results
also provide insights showing that the process improvement culture introduced with
MR-MPS-SW can make easier the introduction of MS-MPS-SV.

Kalinowski and Reinehr [14] present the definition of a process for software devel-
opment and maintenance as an IT service. The management of Service Requests was
introduced in order to meet Service Level Agreements (SLA). The process was struc-
tured based in good practices from Maturity Level G from MR-MPS-SV and good prac-
tices related to IT service provision from ITIL. The process adopted agile practices
using Kanban. The authors state that a service perspective for software maintenance
can provide benefits in productivity, time, costs and quality.

In this paper we share our findings related to the adoption of a service approach to
software maintenance and evolution based in CMMI-DEV and CMMI-SVC practices.

3 Methodology

This research followed the “Industry-as-Laboratory” approach proposed by Potts
[15], instead of the usual “Research-then-transfer”. In this approach, researches are in-
itiated from a practical problem and then refined in continuous and incremental case
studies.

During the planning of a SPI in a Brazilian software company (referred as Organi-
zation A, for privacy agreements) conducted by SWQuality1, we identified an oppor-
tunity for introducing the best practices from CMMI-DEV and CMMI-SVC simultane-
ously to improve the software maintenance and evolution activities and related services
of Organization A. Based on previous experiences as SPI consultants, we observed that
the adoption of Maturity Models related to software development could help improving
the process of the Organizational Units related to the software modification activities,

1 SWQuality Consultoria e Sistemas Ltda (www.swquality.com.br)

but SPI initiatives also had to consider other organizational units related to maintenance
(such as support units) in order to achieve better results. In order to understand the
benefits related to the adoption of these models, we investigated the following two re-
search questions:

RQ1. Is the adoption of CMMI-DEV and CMMI-SVC ML2 viable and appro-
priated for the investigated organization? – This question evaluates the approach
viability considering risks related to the large scope of the project, the size of the or-
ganizations and the high impact in all productive units of the organization. We also
evaluate if the ML2 Process Areas are suitable for the investigated organization and fit
for theirs business needs.

Q2. What are the benefits of the adoption of CMMI-DEV and CMMI-SVC in
the investigated organization? – To answer this question, we evaluated how the ap-
proach contribute to solve the problems identified in RQ1 and discuss any other benefit
observed. Surveys were performed to identify the benefits observed from the perspec-
tive of the professional.

We applied an Action-Research approach [16] to iteratively identify solutions and
document challenges and lessons learned about the simultaneous adoption of CMMI-
DEV and CMMI-SVC in the given scenario. The method was adopted for its emphasis
on research and problem solving in a practical and direct way to create knowledge. The
Action-Research cycles were adapted from [17] and is composed by the activities Di-
agnosis, Plan, Intervention, Evaluation, and Knowledge specification.

The SPI project was executed by two researches, SPI consultants from SWQuality.
In Organization A, a Software Process Engineering Group (SEPG) was established to
act as an interface between the researchers and the organization. The SEPG was respon-
sible for introducing changes to the processes of the organization and providing feed-
back to researchers about the project execution. The project execution was performed
from March/2012 to February/2013 and resulted in the first simultaneous CMMI-SVC
and CMMI-DEV SCAMPI appraisal in Brazil.

4 Characterization of Organization A

Organization A has 25 years of experience in the software industry. It provides a soft-
ware solution and related services (support, deployment, migration, training and devel-
opment of customized reports) to the market segment of laboratory clinical analysis.
Thus, the maintenance and evolution of its software product is a key activity to sustain
the organization business model. The company is structured in three main units, related
to the organization key activities:
Development (6 collaborators): Responsible for software maintenance and evolution;
Support II (7 collaborators): Responsible for system deployment and migration, cus-
tomized reports, testing, user training and specialized customer support;
Support I (6 collaborators): Responsible for direct customer support. This unit is re-
sponsible for providing users and clients with technical support and guidance in order
to maintain the appropriated product usage. This unit is also responsible for registering
and directing specific customer needs to other organization units.

Since organization A provides its products to over 500 customers nationwide, re-
quests for maintenance, new functionalities and general support arrived in irregular ba-
sis at the “Support I” unit, from diverse communication channels. Then each support
analyst was responsible for providing the required support or directing the request to
the appropriate organizational unit. In the “Development” unit, the maintenance re-
quests were executed as they came, and requests for new functionalities were analyzed
by the organization executive officer, in order evaluate their relevance to the business.
In addition, software evolution proposals were planned by the executive officer to en-
sure business competitiveness and differentiation.

This led to problems regarding the difficulty in managing requests (registering,
tracking their status) and, consequently, in the risk of not attending to customer expec-
tation appropriately. This problem was aggravated by the lack of process management
and documentation, the lack of clear roles and responsibilities, communication prob-
lems. The constant change of priorities, given the urgency of some requests and busi-
ness opportunities, was a challenge to plan releases and to estimate work efforts, di-
vided between maintenance and evolution requests. The organization size implicated
in the development unit being responsible for doing all activities related to implemen-
tation of changes in the software.

In the technical aspect, the capability of maintaining the software was hampered by
the low understanding of the maintained system due to the lack of software documen-
tation and the necessity of training the maintainers both in the software technologies
and in its business rules.

The lack of proper documentation and training in the software usage, also led into a
increased number of support request from the users.

The problems observed in the organization during initial diagnosis phase of the SPI
project (Figure 1), required that the SPI efforts were tailored to the organization needs.

Fig. 1. Problems Observed in the Organization A.

The SPI efforts should not focus only in the “Development” unit, but comprehend
the “Support I” and “Support II” units the dependencies amongst these units. The SPI
effort should consider the specific characteristic of software maintenance and evolution
and the limitations imposed by the company size.

5 Process Improvement in Organization A

The SPI program in organization A was performed in 11 months. In this Section, we
discuss how the Process Areas (PA) from CMMI-DEV and CMMI-SVC were intro-
duced to Support the process improvement in Organization A. In addition to PA from
Maturity Level 2, we introduced some PA from ML3 considered important to attend to
the problems identified during the diagnosis.

5.1 Service Delivery (SD)

In order to improve the request management, a “Service Portfolio” was established,
mapping all activities performed in the organization into services. Thereafter, the or-
ganization improved their communication with customers, describing Service Level
Agreements (SLA) for each service provided. The SLA helped the organization in un-
derstanding and defining clear responsibilities for each unit in relation to the provided
services. The SLA described clear procedures for accepting, monitoring and closing
service requests and also described the responsible organizational units, obligations,
request life-cycle, and objective parameters to evaluate the quality of the services pro-
vided. The specified services for Organization A were: “system deployment”, “migra-
tion”, “training”, “support”, “Product Evolution”, “Product Maintenance” “custom re-
port development".

The communication between units and the coordination of efforts to provide specific
services was internally managed based in Operational Level Agreements (OLA). These
OLA provided procedures and parameters to evaluate and track services provided in-
ternally amongst organizational units. For instance, the service “Product Maintenance”
involves the units “Support I”, “Support II” and “Development”, described as follows:

1. A Support I Analyst assess the problem described by the customer. If it’s related to
system usage or configuration, the Support I Analyst provide the necessary guidance
(“Support” Service) to the user for the problem solution. The solution is registered
and the request is closed;

2. If the problem is not solved or if it’s clearly related to a software failure, a “Product
Maintenance” request is registered, it is assigned to the Support II unit. Support II
analysts evaluate and try to apply a definitive solution. If the problem is not resolved,
a palliative solution is applied and the problem is assigned to the Development unit
with updated details and urgency evaluation;

3. Based in the priority of the problem and the palliative solution provided (or not) by
the Support units, the Development unit evaluates the problem urgency. Non-urgent
corrective maintenance are placed in the product backlog as an external bug and are
planned for the next development iteration (or in the current, if there are available

resources). Urgent corrective maintenance are immediately placed in the current de-
velopment iteration and flagged as a “non-planned” activity.

4. Support I unit is notified about the progress of the requests. When the problem is
resolved, a detailed description is communicated in the closed ticket and the cus-
tomer is notified.

The SLA provide clear and objectives parameter to monitor and evaluate the execu-
tion time of each request. In the example provided above, the expected time limits for
“Product Maintenance” service is governed by the urgency of problems.

• Urgent problems that prevent the customer from performing their activities: 3 days.
• Urgent problems that do not prevent the customer from performing their activities:

6 days.
• Non-urgent problems: 15 days.

To support the definition of a Service System, an internal Helpdesk tool was used to
support the management of the Support Teams activities and to register all customer
service requests. The tool “Redmine” was customized to support the management of
activities for the Development Team. To improve the reception, registering and priori-
tization of requests, formal communication channels were institutionalized, and a Sup-
port I analyst was responsible for the initial customer contact and placing the incoming
requests in queues.

5.2 Work Planning (WP) and Work Monitoring and Control (WMC)

In the “Development” unit, a six people workforce was divided into developing new
functionalities from a constantly growing product evolution backlog, and the unpredict-
able load of maintenance requests. Planning activities was difficult because of priorities
changing and the difficulty in estimating the activities. We introduced the concept of
Work Plans, as defined in the CMMI-SVC, instead of organizing activities in traditional
Projects. This way, the planning of activities was concerned about stablishing goals,
based in the provision of services during a fixed time. Monthly work cycles were
planned in relation to goals, allocation and availability of resources (mostly based in
men-hour available), risks, schedules for process related activities and estimates of
workload based in history data of previous cycles. Each cycle was composed by a plan-
ning phase, two development iterations (2-week long), based in the sprints from the
Scrum framework, a review milestone between the iterations and a conclusion phase.

As stated in the literature, software maintenance is labor intensive, with the majority
of costs arising from salaries [3], hence the planning of the work cycles was strongly
based on the people availability. The first planning action was the accounting of avail-
able working hours for each Team Member. The total men-hour was the key resource
for the Manager to plan activities. From the total men-hour available, the effort planned
for process activities (scrum ceremonies, audits, analysis meetings, management activ-
ities) were subtracted and the remaining men-hours represented the available resources
for development activities.

The scope of development activities was composed of known set of prioritized soft-
ware evolution requirements (from a product roadmap) and an unknown amount of
maintenance requests that arrives in an irregular basis. For this reason, the amount of
unplanned (maintenance requests) work from the previous cycles became a factor to
decide how much effort would be planned for known activities (development and pro-
cess related), and the remaining would be saved for unplanned activities. We perceived
that this action resulted in a better control over the changing priorities, and allowed the
team to provide a “Product Maintenance” service in accordance to expected service
levels. An example of effort planning is shown in Table 1.

Table 1. Effort Distribution example.

Process and Manage-
ment related activities

Available time for De-
velopment Activities

Time Buffer for unplanned
Activities (15%)

Total

Sprint 152 Sprint 153 Sprint 152 Sprint 153 Sprint 152 Sprint 153
87 h 80 h 203 h 182 h 30 h 27 h 552 h

Similar work cycles were introduced in the “Support I” and “Support II” units, with
proper adaptations to their activities. Table 2 shows effort planning for the “Support I”
unit in a given work cycle.

Table 2. Effort estimates for Support.

Activity % Hour Planned Total Hours

Filtering and Training 32% 183
Customer Support 65% 375
Internal Meetings 3% 16
Total 100% 574

By the end of each iteration, retrospectives meetings were held where data from
measurement (described in the subsection “Measurement and Analysis”) reports are
used to evaluate the performance of teams and perceived quality of the services. During
this activity, the work plans are revisited and the work progress is evaluated in relation
to the plans. Actions are planned to prevent or to mitigate deviations from plans and
expected goals, performance and quality levels.

5.3 Measurement and Analysis

To support management processes and ensure greater visibility and understanding of
the organization's activities, a measurement base was structured. Changes were intro-
duced in the organizational culture in order to promote measurement analysis. The man-
agement tools (Redmine and the internal helpdesk tool) allowed us to store and extract
quantitative data about activities such as: spent time, number of activities, types of ac-
tivities, categories of tickets, and others. Historic data about the team productivity was
used to support estimates.

The introduction of the service perspective brought the need to assess data about
deviations from the SLA and the quality of services. Once a measurement baseline had

been set, the Goal-Question-Metric (GQM) approach was applied to establish improve-
ments objectives, information needs and the appropriate metrics [18]. A sample of
measures established includes: effort in Hours, size in story points, occupation rate,
customer satisfaction rate, compliance rate with the process, user history acceptance
rate, rework rate and instability scope.

For each measure, thresholds were defined for “good”, “alert” and “critical” levels.
The data was collected and evaluated during Sprint Retrospective meetings.. In case of
Alert and Critical levels for any indicators, the causes are investigated and actions are
planned for mitigate impacts.

The introduction of Scrum framework allowed us to collect information from sprints
such as planned activities, story points, sprint velocity, accepted and rejected points.
The main productivity data used was the “Story Point Cost”, given by the ratio of work
time to Story Points done in a work cycle. Using the mean value of the past four work
cycles multiplied by the available men-time for development activities, we determine
the expected size of the project scope in Story Points.

5.4 Configuration Management

Configuration Management played a key role in the organization, for both controlling
the changes of products and services.

To ensure control of the product evolution, a formal procedure for change control
was established in the organization. Any change request (for evolution or maintenance
of the product) had to be registered in Redmine as a backlog item. These requests were
evaluated for feasibility and impact, and prioritized for development. All the modifica-
tion made to the software and submitted to the organization's versions repository (SVN)
had to be associated to a change request (through log messages during check-in opera-
tions). It assured bidirectional traceability between source code and requirements.

A product roadmap was established to plan the release of new features and bug fixes
in new versions of the product. Each six months a new version of the product was
planned. Additional releases were planned in accordance to business objectives and
customers’ needs. Monthly, internal versions of the product were released for testing
and for training purpose.

Change procedures were also established for the services provided. Changes related
to SLA needed to be formally evaluated and approved, ensuring that impacts were an-
alyzed and minimized.

5.5 Verification and Validation

In the Development sector, testing activities (peer review) started to be executed on all
development activities undertaken during the sprints. In addition, the tool “Hudson”
was used to perform automated integration tests on the system, and at the end of the
sprint, the features were validated in Sprint Review meetings.

Each month, a member of the Support II performed tests on internal releases. And,
after the release of version (every six months) a load of general system tests involving
all team members was held, lasting 2-3 days. The identified failures now recorded as

"bugs" in Redmine tool, favoring the monitoring of their resolution and allowing to
generate measures on rework.

Formal testing procedures were introduced to increase the external quality of the
product (lowering the number of external bugs found). As a procedure of the “product
evolution” service, Support analysts were responsible for testing internal releases of
new versions of the product. As stated before, Support analyst started participating in
Development Ceremonies for anticipating

5.6 Requirement Management (REQM)

The REQM practices (from CMMI-DEV) were important to ensure the understanding
of the CR (for product evolution and for maintenance). A critical step was the definition
of a requirement provider, represented by the Product Owner, acting as a product man-
ager, balancing the user needs, market opportunities, legal obligations and other sources
of changes. His role was to maintain a persistent and prioritized product backlog.

Changes in the product backlog were mainly related to priorities changes. The Prod-
uct Owner responsibility was to ensure the priorities reflected the organizational busi-
ness goals. In the context of the development iterations, he was responsible for ensuring
the team understood the changes they were supposed to do, and to assess the iteration
results.

5.7 Requirement Development (RD) and Technical Solution (TS)

The practices from RD and TS were helpful for supporting better software documenta-
tion, in relation to requirements, user manuals, release notes, and technical decision
over the software changes. Given the high turnover in the organization and the com-
plexity of the software maintained, documentation of business rules, technical solutions
and software usage is crucial to sustain the software maintainability.

5.8 Incident Resolution and Prevention

Organization A established a monthly meeting for the manager of each organiza-
tional unit with the Chief Executive Office to discuss the situation of each unit. During
this meeting, one of the topics discussed was the evaluation of the recurrent problems
observed during the month (bugs, user problems and management problems). The top
10 problems were analyzed for identification of causes and to speculate solutions such
as enhancive and preventive maintenance requirements for the product.

5.9 Organizational Training

Training schedules were established for support teams and for users to improve the
practical knowledge over the software usage. The training sessions comprised pre-de-
livery or transition activities, ensuring that the organization staff was fully capable of
supporting users in the usage of software, and increasing the autonomy of support teams

(especially Support I). Additionally, in every sprint a support professional was selected
to participate in a practical training in another organizational unit.

5.10 Product and Process Quality Assurance

A quality assurance process was set in order to verify that the established procedures
were being followed in each unit. Deviations from the standard were recorded as "non-
compliance" and assigned those responsible to fix in a pre-agreed time. Quality assur-
ance procedures were important to preserve the proper quality of processes, products
and services.

6 Evaluation

We observed that the simultaneous use CMMI-DEV and CMMI-SVC reference models
allowed us to tailor the SPI efforts to better fit the organization business model. The
extent of the SPI project comprised the three main units in the organization, as shown
in Figure 2.

Fig. 2. CMMI-SVC and CMMI-DEV Scope.

Although the SPI project was limited to CMMI-DEV and CMMI-SVC ML2, we
observed the necessity of introducing some practices from ML3 Process Areas (VER,
VAL, OT, IRP, RD, TS). The experience points that, considering the focus of the or-
ganization, the management aspect of maintenance and evolution was benefited from
the practices related to improvement of service providing (CMMI-SVC), while the
technical aspect (analysis, coding, testing, configuration management, validation, doc-
umentation) was better supported by CMMI-DEV practices. In this organization, we
observed that the management of activities as a service was more appropriated than the
project structure. However, we perceived a lack of product management practices from
the reference models to help managing the product evolution backlog.

The SPI project culminated in a successful appraisal of Organization A process in
CMMI-DEV and CMMI-SVC ML2. Despite the size of the organization, the amount
of Process Areas introduced was not an impediment. The common PA between CMMI-
DEV and CMMI-SVC could be introduced in a uniform strategy.

During the Evaluation activity of each Action-Research cycle the SEPG members
provided feedback about how the organizational problems were addressed by the SPI
actions.

The introduction of monthly work cycles structure, scrum sprints and clear proce-
dures for each service provided was stated as a solid approach for addressing the prob-
lems related to communication and lack of process management, process documenta-
tion and lack of clear roles and responsibilities.

The introduction of measurement policies improved the overall quality of process
management, and allowed better estimates based in quantitative historical data instead
of relying only in human predictions. It provided detailed information about the organ-
ization performance, the quality of services and overall management visibility.

Figure 3 (a) shows the measure of productivity adopted by Organization A called
“Cost of Story Points”. It shows the amount of time (in hours) related to the develop-
ment of a Story Point (SP) in a given sprint. Lower values shows that the team could
focus more in the development of new features. In 17 sprints (from September/2012 to
May/2013) we observed the decreasing tendency of this measurement.

Figure 3 (c) shows the comparison between the number of planned SP, developed
SP and accepted SP (velocity). It shows the precision of estimates and the effectiveness
of the team in each sprint.

Fig. 3. (a) Cost of Story Points; (b) User Satisfaction; (c) Planning Effectiveness.

The management of corrective maintenances through a service perspective allowed
more effective reaction to bug fixing. SEPG members stated that the amount of bugs
detected in each sprint and the amount of requests resolved in conformity to SLA, and

that the estimate of a time buffer for unplanned activities improved the efficiency of
their plans and the attendance of requests without compromising the commitment to
planned tasks.

Formal verification and validation procedures mitigated the release of versions with
failures. Testing procedures executed by support analysts both provided better identifi-
cation of failures before the release of new features to users, and stablished pre-delivery
activities, where support teams were able to get familiarized, test and document new
features before the release of new versions. Scheduled trainings for users and maintain-
ers were also introduced to the organizational process, increasing the usage quality of
the software product.

The introduction of procedures for each service provided, streamlined the manage-
ment of requests, the accountability of the service quality and allowed each request to
be monitored with SLA constraints. Customer satisfaction metrics were introduced, by
randomly contacting 10 customers per week whose requests have been resolved in the
period. Figure 3 (b) shows and increasing tendency in customer satisfaction from
June/2012 to June/2013.

Finally, the introduction of meetings to discuss recurrent problems improved the
elicitation of improvement requirements as perfective and preventive maintenance op-
portunities. The communication between support teams, development team and the ex-
ecutive management was stated as a solid improvement for the product evolution plan.

7 Conclusion

This paper presented insights about the adoption of a SPI initiative based in CMMI-
DEV and CMMI-SVC to support the software maintenance and evolution in a small
organization. The results show that significant improvements were perceived in the or-
ganization. We observed that the managerial aspect of software maintenance and evo-
lution was better supported from a service perspective, while the technical aspect was
benefited from the engineering and support practices from CMMI-DEV (e.g. CM,
VER, VAL, TS, RD). Thus, we noticed the reference models can be used in comple-
ment to each other. Although the SPI project was limited to CMMI-DEV and CMMI-
SVC ML2, we observed the necessity of introducing some practices from ML3 Process
Areas. Thus, we believe that SPI initiatives in similar environments could beneficiate
from CMMI continuous representation [9][10], promoting the adoption of Process Ca-
pabilities Profiles [19].

While the achieved results may not be generalized, we believe that this is not a threat
to the study, since SPI practitioners could benefit from the reported experience for plan-
ning SPI initiatives in similar contexts.

8 References

1. Institute of Electrical and Electronics Engineers: “IEEE Std. 1219-1998 - IEEE Standard for
Software Maintenance”, New York, 1998.

2. Bourque, P. e Fairley, R. E. “Guide to the Software Engineering Body of Knowledge –
SWEBOK”, v3.0 version, The Institute of Electrical and Electronics Engineers, Piscataway,
NJ, 2014.

3. April, A., Abran, A. “Software Maintenance Management: Evaluation and Continuous Im-
provement”. ISBN: 978-0-470-14707-8. Wiley-IEEE Computer Society Press, 2008.

4. Grubb, P. and Takang, A. “Software Maintenance: Concepts and Practice”, 2nd ed., World
Scientific Publishing, 2003.

5. Polo, M., Piattini, M., Ruiz, F. “Using a qualitative research method for building a software
maintenance methodology”. Journal Software: Practice and Experience", volume 32, issue
13, pages 1239-1260, November 2002.

6. Niessink, F. e van Vliet, H. “Software Maintenance from a Service Perspective”, Journal of
Software Maintenance: Research and Practice 12(2), 103-120, March 2000.

7. April, A., Huffman Hayes, J., Abran, A., Dumke, R. “Software Maintenance Maturity Model
(SMmm): The Software Maintenance Process Model”, Journal of Software Maintenance &
Evolution: Research & Practice, 17(3), 2005, pp. 197-223, 2005.

8. Kajko-Mattsson, M. “Maturity status within front-end support organisations”, in in 29th In-
ternational Conference on Software Engineering, ICSE 2007, May 2007, pp. 652–663, 2007.

9. Software Engineering Institute. “CMMI for Development, Version 1.3”, CMMI-DEV v1.3,
CMU/SEI 2010-TR-033, Technical Report, Software Engineering Institute, Nov, 2010.

10. Software Engineering Institute. “CMMI for Services”, Version 1.3 CMMI-SVC, V1.3,
CMU/SEI 2010-TR-034, Technical Report, Software Engineering Institute, Nov 2010.

11. Pino, F. J., Baldassarre, M. T., Piattini, M., Visaggio, G. “Harmonizing maturity levels from
CMMI ‐DEV and ISO/IEC 15504”. Journal of Software Maintenance and Evolution: Re-
search and Practice 22.4, 2010.

12. Araújo, L. L., Mocny, E. C., Rocha, A. R., Gonçalves, T., Santos, G. “Experiência de Im-
plantação do MR-MPS-SV no Service Desk da ECO Sistemas”. XIII Simpósio Brasileiro
de Qualidade de Software. Blumenau, agosto, 2014.

13. Jordão, L., Kalinowski, M. “Investigando a Aplicabilidade do MPS-SV na Melhoria de Ser-
viços de Desenvolvimento e Manutenção de Software”. IX Workshop Anual do MPS, 2013.

14. Kalinowski, M., Reinehr, S. “Estruturando Desenvolvimento de Software como um Serviço
de TI: Uma Experiência Prática”. XII Simpósio Brasileiro de Qualidade de Software, julho,
2013.

15. Potts, C. “Software-Engineering Research Revised”, IEEE Software, 10 (5), 1993.
16. P. Coughlan and C. Coughlan. “Action research for operations management”. International

Journal of Operations & Production Management, Vol. 22 Iss: 2, pp.220 – 240, 2002.
17. N. Kock. “The three threats of action research: a discussion of methodological anti-dotes in

the context of an information systems study”. Decision Support Systems. 37(2) 2004.
18. Basili, V. R., Caldiera, G. e Rombach, H. D. “The Goal Question Metric Paradigm”, Ency-

clopedia of Software Engineering. New York: John Riley and Sons. 1994.
19. Salviano, C. F. “A Modeling View of Process Improvement”, in SPICE 2011, Dublin. Pro-

ceedings of 11th International Software Process Improvement and Capability Determination
Conference. Berlin: Springer-Verlag, CCIS 155, 2011.

