
A Practical Experience of a Software Process Line
Creation

Andréa M Magdaleno1, Renata M Araujo2, Cláudia M L Werner1,
Carlos Freud Alves Batista3

1UFRJ – Federal University of Rio de Janeiro
COPPE – Systems Engineering and Computer Science Department
Zip 21945-970 – Rio de Janeiro – RJ – Brazil – P.O. Box 68511

2Graduate Program in Information Systems (PPGI) – UNIRIO

3Petrobras - TIC/CPSW/PGOD/PMSW

andrea@cos.ufrj.br, renata.araujo@uniriotec.br,
werner@cos.ufrj.br, carlos.freud@petrobras.com.br

Abstract. Software process definition is a complex, time consuming and error
prone activity. Such activity can be facilitated by a process reuse strategy. This
strategy can be implemented through process line and components structures.
This work presents a case study of a real process line creation in the context of
an oil and gas company in Brazil. The results indicate both practical use and its
potential to assess completeness and to identify inconsistencies in the
organizational process.

Keywords: Software process, process definition, process composition, process
line, process reuse.

1 Introduction

The assumption that a defined software process directly influences the quality of the
developed product [1] has motivated many software organizations to invest in
software processes definition. Process definition initiatives are usually challenged by
diversity in various levels.

The diversity of organizations and projects makes the contexts in which
processes are used very distinct. Since the universe of software projects is extensive
and diversified, a single software development model cannot satisfy all of them.
Despite plan-driven [2], agile [3] and free/open source software (FOSS) [4]
development models aim to improve software development, each model represents a
distinct development universe, differing in philosophy and main characteristics. In
order to establish more effective software processes, research in the area has
discussed how to promote the reconciliation among these development models [5].

Process diversity occurs when a project is executed by applying different

processes. It may happen: (i) concurrently in projects with different teams working in
parallel; (ii) the adoption of different software processes throughout the lifecycle of a
project, observed over time in the transition from development to maintenance stages
[6]. Finally, a process cannot be defined without considering people who will use it
(such as employees) or interact with it (such as customers and suppliers).

All these different kinds of organizations, projects, development models, people
and teams make it harder to define specialized processes to cope with known and new
development contexts [5]. There is a growing need for the effective definition of
software processes that can handle this diversity [7].

Despite being one of the main tasks to be executed by the Software Engineering
Processes Group (SEPG), process definition is not simple. Such activity demands
experience and knowledge from several aspects of Software Engineering. Process
definition can be time consuming, error prone and cause the following negative
consequences [8]: unnecessary activities that lead to a waste of time and money; the
omission of necessary activities, which may affect the product quality; and the failure
to comply with the organizational or international standards.

In practice, process definition can be improved by a reuse strategy based on
smaller process units. This work is based on process lines [7,9–11] and components.
These reuse structures have the potential to deal with process diversity or variability,
help to disseminate knowledge and successful experiences.

In order to facilitate process composition, we previously presented Context-Based
Process Line Engineering (CBPL) [12] and COMPOOTIM [13] approaches to
support project managers’ decisions about process components selection and
combination and optimize the suggestion of processes to the context of a particular
project. Following our research agenda, the first analysis of a case study based on
CBPL was discussed with the community in [14].

In this work, the case study’s planning and execution are completely described. It
was conducted in a real context of a large oil company in Rio de Janeiro, Brazil. The
main goal was to evaluate the feasibility of supporting a process manager in the
creation of the organizational process line. Process reuse is still a new topic in the
company and this knowledge is not widespread. This case study is a step in this
direction and a first version of the process line was achieved. Moreover, the
company's interest in the topic shows that it is a real problem in the software industry.

The remainder of this paper is organized as follows. In Section 2, the CBPL
approach is presented. Section 3 describes the plan and the execution of the case
study. In Section 4, the results and threats to validity of the evaluation are analyzed.
In Section 5, some related works are discussed. Finally, Section 6 concludes the paper
and indicates some opportunities for future work.

2 Context-Based Process Line (CBPL)

A process line refers to the application of the product line [15] idea to processes. It
corresponds to a set of processes in a particular domain, having common
characteristics and being built based upon common, reusable process assets [11].

Aiming to offer a systematic approach to support process composition and reuse, a
CBPL was created. It combines the reuse of the process line with the dynamic of

context [16], which makes possible to identify modifications in a process at runtime
in order to adapt to new situations. CBPL corresponds to a set of process components,
organized to represent common and variants parts within a specific domain that can
be reused and combined, according to composition rules, to dynamically compose and
adapt processes. The CBPL approach was similarly structured to the product line
phases: Software Process Domain Engineering (SPDE) and Software Process
Application Engineering (SPAE) (Fig. 1.) [10,12].

Fig. 1. Context-based process line (CBPL) approach [17]

SPDE is performed by process engineer(s) when there is the need to establish a
process line; and when requirements, needs and goals change, promoting the
evolution of the line. Existing process and/or reference models serve as input.

The SPDE phase creates the process line with a generic set of processes that
captures the commonalities and variabilities in a domain. It makes explicit the points
where these processes are similar and can be reused, and the points where they
diverge, and need specific treatment. Variability in software processes becomes
important in order to deal with diversity and adapt for use in a particular context.

In SPDE, the Analysis phase aims at identifying the domain knowledge through a
feature model [18] (represents domain characteristics, commonalities, and
variabilities of a process) and composition rules (represent dependencies or mutually
exclusive relationships). At Design, process architecture is specified to define the
main components, their internal properties and interfaces, and how they relate to each
other. Each feature has a set of components that implement a process. Implementation

of the process architecture aims at generating executable models (Fig. 1.a).
Regarding context, during Analysis it is also possible to identify the contextual

information considered relevant to describe the process. The context model is
composed of context dimensions and information [19]. At Design, the context model
is refined through context definitions (situations that may happen based on the
combination of certain context information) and context rules (suggest process
selection based on context definitions) [19]. Implementation involves the creation of a
context repository (Fig. 1.b).

After establishing the SPL in SPDE, for each project, instead of defining a process
from scratch, project managers can make use of the process line infrastructure to
compose a specific project process in SPAE. SPAE phase contains activities similar to
those presented in SPDE (Fig. 1.c). First, at Analysis, the outcome is a cutting of the
feature model, containing only the features necessary for the new process. During
Design, the process components are selected to be used within the architecture. From
these inputs and the existing context, the new process is composed. Finally,
Implementation comprises an analysis of supporting tools for process execution. As a
result, the process is ready to run and to be adapted at run time.

This work focuses on the organizational SPL creation at SPDE. Within SPDE, the
key phases of this research are Analysis and Design, because it is precisely during
these two phases that process managers need assistance to deal with variability.

3 Case Study

In this section, we discuss the creation of a SPL in a real industrial context in Brazil.

3.1 Planning the study

This case study has the following goal and scope, defined according to [20] structure:

Analyze the CBPL approach
With the purpose of characterizing
With respect to feasibility of creating a SPL
From the point of view of a manager of the SEPG
In the context of a real industry environment

This case study used data from organizational process models and standards. These
documents describe in details the activities, roles and artifacts of the software process.
One development methodology - Object Orientation - was specifically selected
among the approximately 12 existing methodologies in the organization. Traditional
project management, the project management with agile methods and Testing and
Configuration Management subprocesses were also adopted.

Five main instruments were designed and validated with an expert: the term of
consent that declares the purpose of the study and ensures data confidentiality; the
characterization form to determine the participant’s profile; training material used to
explain the main concepts of SPL; the study form used for collecting the results of the
tasks; and a survey, which intended to obtain qualitative information about the study.

3.2 Conducting the study

This case study was performed in March 2013 with the manager of SEPG (composed
by 20 members and located in a specialized division of the organization focused on
software processes and methodologies). The profile of the participant indicates 10
years of experience in Software Engineering, Project Management and Software
Process Definition. However, the participant did not have experience in Reusing
Software Processes. The participant claimed to have much familiarity with all of
organization’s software processes. These processes were characterized by him as
large, with an average complexity and with high relevance to the organization.

From the company’s original processes (which cannot be made available due to a
non-disclosure agreement), an initial draft of the SPL was created following the steps
of SPDE. The resulting SPL was presented to the SEPG manager and evaluated based
on his experience and knowledge. Each session analyzed different artifacts and
suggestions and comments of the expert were recorded on a spreadsheet.

In the first step, the main reference for the creation of the features model was the
organizational software development process. From this process, 86 process features
were extracted – including activities, tasks and products (Table 1). The features were
organized by phases (initiation, planning, execution, monitoring and closure).

Table 1. SPL’ features

Phase Total By type By Optionality By Variability

Inception 26
Activity 1 Mandatory 8 Invariant 26
Task 9 Optional 18 Variant 0
Product 16 Var Point 0

Planning 14
Activity 3 Mandatory 1 Invariant 11
Task 5 Optional 13 Variant 2
Product 6 Var Point 1

Execution 33
Activity 4 Mandatory 8 Invariant 30
Task 15 Optional 25 Variant 2
Product 14 Var Point 1

Monitor and
Control 9

Activity 1 Mandatory 3 Invariant 6
Task 2 Optional 6 Variant 2
Product 6 Var Point 1

Finishing 4
Activity 1 Mandatory 4 Invariant 4
Task 1 Optional 0 Variant 0
Product 2 Var Point 0

 The process features model of the planning phase is partially presented in Fig. 2.
This model uses OdysseyProcess-FEX notation [21] and was created with the support
of the Odyssey environment [22]. It is composed by 3 activities, 4 tasks, and 10
products. These elements are related through different types of relationships. The
mandatory features are represented by a continuous line and optional features by a
dotted line. This feature model has two main activities: Traditional and Agile
Planning, both optional and composed by tasks with different planning granularity. In
the Traditional approach, it indicates both project and solution planning. In the Agile
approach, it is suggested both the release and the sprint planning.

From the process features, 8 composition rules were created. The features

mentioned in the rules are indicated with a RCCAX code in the upper right corner
(Fig. 2). Some of these rules are presented in Table 2.

Fig. 2. Process features – Planning phase.

Legend: Mandatory process features – Rectangle with continuous line. Optional process
features – Rectangle with dotted line. Composition rules – Code in the upper right corner

In SPDE, it is also required to define the context model, including context
dimensions and information. As a starting point, Araujo et al. [23] suggest nine
context dimensions for the software domain. In this study, these context dimensions
were maintained, because the company adopts no specific definition.

Table 2. Examples of features composition rules

Rule Antecedent Type Consequent

RCCA1
Agile planning OR
Build agile software solution

Inclusive Track agile project

RCCA8 Request approval of project vision Inclusive Develop project vision

The 24 context information items identified were distributed on 4 of these

dimensions: customer/user, software product, project, and team (Table 3). The context
information elements have been defined based on the criteria for rating the
complexity of the project and assumptions for agile development (Table 3). To
amplify the understanding, we can take one of them as example: Type of
Development. The main idea is that the company can have process variations for
corrective, emergency, evolutionary/adaptive maintenance, or new development.

Table 3. Context dimensions and information

Dimension Context Information
Customer/User Geographical dispersion.

Software Solution with a deadline of use, Impact of unavailability, Use of

Dimension Context Information
Product standard infrastructure, Availability of documentation, Algorithmic

complexity, Components reuse, Complexity of the logical data model,
Amount of concurrent users, and Information classification.

Project
Scope instability, Deadline constraints, Need for procurement or
contracting, Sprints (number and duration), Use of new technologies,
Type of development, HH amount, and Accordance with SOX.

Team Team size and Solution knowledge.

In the next step, 86 process components (Table 4) were extracted detailing the 32

features of type "Task" created in the previous phase of SPL. For instance, from the
feature “Plan Software Project” (Fig. 2), 11 process components following the
traditional project management methodology were detailed. From the process
components, 9 composition rules were identified.

Table 4. SPL‘ process components

Methodology/Subprocess Total Mandatory Optional
Traditional project management 29 12 17
Agile project management 8 4 4
Object Orientation 21 1 20
Software Test 5 4 1
Software Configuration Management 12 8 4
General 11 3 8
Total 86 32 54

Table 5 shows an example of a process component. The structure of a process

component in this research included: i) identifier; ii) name; iii) role; iv) description; v)
associated feature; vi) optionality; vii) variability; and viii) input and output artifacts.

Table 5. Process component example
Process Component: CP01. Project Responsible Assignment
Role: Team Leader
Description: Project start milestone. Formally designate the leader of the project to
form the Project Open Charter.
Process Features: Start project
Optionality: Mandatory Variability: Invariant
Input: Software Project Information (Mandatory)
Output: Project Open Charter

Regarding the context model, after understanding context information, the next

step was to establish context definitions. Context definitions represent circumstances
that may happen based on the combination of values of certain context information. A
total of 26 context definitions were identified. An example of a common situation that
influences the organizational software process domain is “Agile project” defined by
the expression: Sprints=Yes AND (Number of Sprints >=2) AND (Team Size<=9
members) AND (Sprints Duration=1<=x<=4). An expression combines the values of
the previously defined context information (Table 3).

Context rules can specify the actions to be taken for a given situation. They
represent how a context situation affects the configuration of a software process. The

context rules were generated based on context situations and features model of the
SPL (Table 6). It is noteworthy that no context rules were defined by setting actions
for all context definitions identified, which means that in practice some definitions
will not be applied in this case study. An increased use of context situations and rules
in SPL would increase the wealth of suggestions that CBPL is able to make in the
composition of software processes.

Table 6. Examples of context rules

rule Context Definition Features

RCTX1 Agile project Implies
Agile Planning AND
Track agile project

RCTX3
New development OR Nonstandard
infrastructure OR Project with acquisitions

Implies
Assess feasibility of

infrastructure

RCTX4 SOX Project Implies Inspection

RCTX5 Complex modeling Implies Data administration

At the end of this study, a complete SPL was ready for use in the organization.

The discussion of the main results is presented in the next section.

4 Results Analysis

The study was performed in four individual sessions, spread over a month and with a
mean duration of 01:20 hs each. During the sessions, the created SPL was presented
to the SEPG manager and evaluated by him using the peer review technique. This
review resulted in 44 comments.

These comments were classified according to the severity, phase of the
development process, type and details of artifact where the remark was made, and
classification based on defect taxonomy [24]. The analysis of the defects found,
summarized by the graphs in Fig. 3, allows us to observe that 60% of the defects has
low severity. Only three defects had high severity, as follows:
• In the case of agile method, creating activities features (representing the stages of

development) was not explicitly presented in the original process model.
However, without using such an aggregator, the complexity of the features model
increases and its legibility would be compromised. Therefore, a decision had to
be taken about complexity versus reliability in the representation. In the final
model, the subject chose to keep the division in stages;

• When looking at the process features diagram, the participant missed a
representation of the process activities sequence. However, the notation adopted
[21] does not provide this kind of representation;

• Finally, the participant noted that the same artifact is an input for many tasks.
Therefore, it could be put as input in the activity that comprises all these tasks,
rather than being repeated for all of them.
According to the classification applied (Fig. 3), only 1 defect (regarding agile

method) was rated as "incorrect fact", as explained above. The 11 "omission" defects
were caused by the absence of any item in the SPL or by the lack of information about
the mandatory elements in the process documentation. Most of the defects were

caused by "ambiguities" or "inconsistencies" between the organizational processes
and procedures that required interpretation by the SEPG manager during the
execution of the study. The comments classified as "new information" relate to items
that did not appear in the documentation originally submitted and were added as
supplementary materials by the SEPG manager during the study.

Fig. 3. Analysis of defects

4.1 Qualitative Observations

The subject affirmed that he was able to perform all tasks and was satisfied with the
final SPL. It was considered that the resulting SPL had a large size, due to the amount
of artifacts that comprise it, but noted: "I have never seen another process line to
compare the size". He further stated that the resulting line had a high completeness
and that the time for creation/evaluation of the SPL seemed reasonable.

Although the initial SPL has been created by the researcher, during the review the
subject followed all the steps and reviewed all artifacts of the SPL. The participant
rated this revision as medium degree of difficulty and stated "it required some
interpretations". These interpretations concern the exercise of fitting the process that
currently exists at the organization in the new form of representation proposed
considering reuse. The current process modeling notation was EPC (Event-driven
Process Chain) [25] and as mentioned the creation of the SPL adopted
OdysseyProcess-FEX notation [21] based on features modeling.

When asked about the main difficulty during the evaluation of the SPL, the
participant highlighted the difficulties of understanding the need for composition
rules, as some of them seem obvious and could be replaced by process components
sequencing. However, it is also worth noting that the organization's processes do not
provide a high level of variability. This is because, currently, the definition of
business processes is based on the adoption of a generic standard process. It is not
desired by the company to overload project managers with many decisions during the
tailoring of a process specific to the project. Therefore, the process has a low level of
flexibility, which limits the acting of composition rules. COMPOOTIM approach
brings another perspective, since it can empower project managers’ decisions.

It was also examined whether the CBPL contributed to make optionality and
variability explicit. The participant indicated that they were explicit, but also
demonstrated worry about the full representation of the company’s software process:
"If the complete process of the organization was mapped, it would not guarantee the
correctness of the model without the support of a tool". This comment can be
understood considering that only one methodology (Object Oriented) was selected,

among the 12 currently adopted by the organization. With the modeling of other
methodologies, the generated SPL would be bigger and demand a support tool.

Considering the experience of the participant as the SEPG manager, one can
imagine that he can judge the feasibility of practical use of the SPL created in the
organization. The participant stated that the SPL could be adopted in the organization
with adjustments. He suggested to include the possibility to choose the artifacts
considering the particular needs of each organization. This possibility would need to
be investigated in future evaluations. Still referring to the practical use of the SPL, he
spontaneously highlighted: "I already requested the features model for use in my daily
work in the company". This review highlights a practical contribution for
organizational discussions of the processes.

The main advantage identified by the participant was the fact that the systematic
approach helps to assess the completeness and identify inconsistencies in the process.
This benefit can be considered an unexpected side effect, because it had not been
foreseen during the CBPL proposition. In addition, the approach was considered
helpful for novices or low experience project managers: “It helps even those who do
not have much knowledge about software engineering”.

On the other hand, the main challenge mentioned was the difficulty in
maintaining the SPL updated, as business processes change frequently. Since there are
many traceability among artifacts, the maintenance could be costly if changes have to
be propagated manually between different artifacts. However, the computational
support available through COMPOOTIM tool [12] can facilitate this maintenance.

In addition, one negative aspect mentioned was the lack of simplicity of the
systematic approach that requires assistance (from the researcher and tool). The
participant explained: “It is laborious because it is a new approach that adopts a
different notation”. The need for a researcher support comes from "difficulty in
acquiring new knowledge to do it yourself when you're already used to work
differently". This comment refers to the difficulty of paradigm change, since
organizations typically adopt process notations (such as BPMN - Business Process
Management Notation [26], EPC [25]). Moreover, the structures of process reuse are
new to the participant. The demand for computational support is natural and expected.

4.2 Threats to Validity

This section discusses the main threats to validity for this study, following Wohlin et
al. [20] classification.

The main conclusion threat of this study is the sample size, with only one SPL
using processes from a single company considering one participant point of view, not
being ideal from a statistical standpoint. Therefore, this study presents a limitation in
the results that will be considered only as initial evidence. However, we must consider
that this is one important oil company in Brazil with national geographic distribution.
In addition, actual organization software processes based on different software
methodologies were used to create the SPL with some variability to represent plan-
driven and agile software development models diversity.

As the subject was chosen for convenience, it is a construct threat. It is possible
that his behavior was based on assumptions about the expected results from this
study. A random selection of participants was not possible since participants with

knowledge of the company’s software process and with experience in software
processes definition were required. Another threat to validity is that the SPL has been
created by the researcher and have been validated by the participant. Despite having
followed all the steps of the CBPL during this evaluation, the participant did not
actually create the SPL from the beginning.

Regarding internal threats, we should consider that it was a long study
distributed in many sessions. To prevent the subject from being tired or discouraged,
the study was conducted in more than one session.

Finally, a threat to external validity is that the experiment only considers the SPL
from a single company and from the point of view of a single subject. Thus, it is not
possible to generalize the results to other contexts, but it was a first step in a practical
SPL creation in the Brazilian industry context.

5 Related Work

Although many of the proposals in the SPL area [10,11,27–31] do not present
experimental studies or validations, some exceptions [7,9] should be mentioned.
Aleixo et al. [7] evaluate the feasibility of their proposal, implementing it by using
several model-driven technologies. However, there was no application to an industrial
scenario. In [9], the authors use a previous SPL creation experience to detail their
approach. The created SPL focused on the acquisition processes and was created and
evaluated by internal specialists. Therefore, both results cannot be compared to the
results obtained on the present work. Other different approaches are analyzed below.

Process Family Engineering [30] provides techniques for enabling the production
of processes in a certain business, where each product represents a set of processes
enabled at a certain moment of the execution. This approach produces one software
system that evolves at runtime, where the features are processes.

Rombach [10] states that processes within an organization could be organized
according to similarities and differences and presents SPPL (software product and
process line) engineering where appropriate artifacts and processes can be chosen
based on a set of product and process requirements according to project constraints.

 Washizaki [11] proposes a process-tailoring technique which intends to solve
problems with component-based and generator approaches by building a Process-
Line Architecture (PLA). The goal is to derive project-specific processes from the
PLA, combining, extending and reusing core processes and their variants for a
particular problem domain, following a “bottom-up” technique that uses existing
knowledge on process definitions and applications in the problem domain.

Finally, other two closely related areas are contingency factors and Situational
Method Engineering (SME). Contingency factors [32] refer to variables that
characterize a project to determine the selection of an appropriate method from a
portfolio. This idea of project characterization is similar to the one proposed in this
work. The area of SME [33] is intended to provide organizations with flexibility in
configuring a project-specific process, using methods or fragments stored in a
repository. This support and the existence of a range of process knowledge are similar
to the CBPL approach. However, project manager needs assistance to make decisions
about the process to be adopted in the project. SME gives no indication about the

selection and combination of them to guarantee that the resulting process is
completely usable. The capacity to compose this process, considering the project
context, is a contribution of COMPOOTIM approach.

6 Conclusion

This paper presented the CBPL approach to software processes composition through
process lines. This approach was evaluated through an experimental study conducted
in the context of a large oil and gas company in Brazil. The motivation of the
company in providing a professional at management level to participate in this study
shows that it is an actual problem in the software industry.

The objective was to evaluate the feasibility of creating a process line. The main
result was a complete SPL that makes sense to the manager of SEPG. This SPL can
be used in the future both by the organization to the definition of internal software
processes as well as researches in other experimental studies.

The main conclusions obtained during this case study concern the practical use of
the SPL, which contributed to the organizational discussions of the processes and to
assess the completeness and identify inconsistencies in the process. The approach was
considered helpful for novices or low experience project managers. The next steps for
the generalized adoption of the SPL in the company should be: to train the members
of SEPG in the concepts of SPL and variability; expand the SPL to include other
methodologies; and plan the implementation of a support tool such as COMPOOTIM.

Although this study has obtained positive results, it is noteworthy that this is only
an initial evidence, due to the limited number of participants and the use of only part
of the processes of the organization. However, the company's interest in maintaining a
joint research effort represents a real opportunity for future expansion of process
reuse initiatives in the organization. In addition, future replications of this study both
inside the company (internal) and with other companies (external) can be conducted
to verify if a new effort to define an SPL will succeed.

Moreover, the case study indicated the need for a future review on the need of the
composition rules, considering the alternative of mechanisms to sequence process
components. After this review, one can verify if this systematic can be simplified or
adapted according to the needs of use and representation of each organization while
maintaining the desired results. Other mechanisms that facilitate process consistency
check is currently under development as part of our research group work with SPL.

Finally, this study also indicated the need of some improvements on the
OdysseyProcess-FEX notation. For example, difficulties with the multiplicities in the
activities features were observed. Therefore, the use of other notations, such as [34],
can be helpful and should be evaluated in future experimental studies. Another
possibility is to transform the final artifacts to a BPMN notation that should be more
user-friendly to the SEPG.

Acknowledgments

This work is partially funded by CNPq, FAPERJ and CAPES.

References

[1] A. Fuggetta, “Software process: a roadmap”, Proceedings of the Conference on The Future
of Software Engineering, Limerick, Ireland: ACM, 2000, pp. 25–34.

[2] M.B. Chrissis, M. Konrad, and S. Shrum, CMMI: Guidelines for Process Integration and
Product Improvement, Boston, USA: Addison-Wesley, 2006.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, et al.,
“Manifesto for Agile Software Development,” 2001.

[4] E.S. Raymond, The Cathedral & the Bazaar, O’Reilly Media, 2001.

[5] A.M. Magdaleno, C.M.L. Werner, and R.M. Araujo, “Reconciling Software Development
Models: A Quasi-Systematic Review,” Journal of Systems and Software (JSS), vol. 85, 2012,
pp. 351–369.

[6] N.T. Siebel, S. Cook, M. Satpathy, and D. Rodríguez, “Latitudinal and longitudinal process
diversity,” Journal of Software Maintenance: Research and Practice, vol. 15, Jan. 2003, pp. 9–
25.

[7] F.A. Aleixo, M.A. Freire, W.C. Santos, and U. Kulesza, “A Model-Driven Approach to
Managing and Customizing Software Process Variabilities,” International Conference on
Enterprise Information Systems (ICEIS), Funchal, Madeira, Portugal: 2010, pp. 92–100.

[8] O. Pedreira, M. Piattini, M.R. Luaces, and N.R. Brisaboa, “A systematic review of software
process tailoring,” SIGSOFT Software Engineering Notes, vol. 32, 2007, pp. 1–6.

[9] A. Barreto, A.R. Rocha, and L. Murta, “Supporting the Definition of Software Processes at
Consulting Organizations via Software Process Lines,” International Conference on the Quality
of Information and Communications Technology (QUATIC), Porto, Portugal: 2010, pp. 15–24.

[10] D. Rombach, “Integrated Software Process and Product Lines,” Unifying the Software
Process Spectrum, Heidelberg: Springer-Verlag, 2006, pp. 83–90.

[11] H. Washizaki, “Building Software Process Line Architectures from Bottom Up,” Product-
Focused Software Process Improvement (PROFES), Amsterdam, The Netherlands: LNCS,
2006, pp. 415–421.

[12] A.M. Magdaleno, R.M. Araujo, and C.M.L. Werner, “COMPOOTIM: An Approach to
Software Processes Composition and Optimization”, Congresso Ibero-Americano em
Engenharia de Software (CIbSE), Buenos Aires, Argentina: 2012, pp. 1–14.

[13] A.M. Magdaleno, M. de O. Barros, C.M.L. Werner, R.M. de Araujo, and C.F.A. Batista,
“Collaboration Optimization in Software Process Composition,” Journal of Systems and
Software (JSS) - Special Issue Search Based Software Engineering (SBSE), 2014 (to appear).

[14] C.F.A. Batista, A.M. Magdaleno, C.M.L. Werner, and R.M. de Araujo, “A Experiência da
Petrobras na Criação de uma Linha de Processos de Software”, Brasília, DF, Brasil (In
Portuguese): 2013.

[15] L.M. Northrop, “SEI’s software product line tenets,” IEEE Software, vol. 19, 2002, pp.
32–40.

[16] P. Brezillon, “Context in problem solving: a survey,” Knowledge Engineering Review, vol.
14, 1999, pp. 47–80.

[17] V.T. Nunes, C. Werner, and F.M. Santoro, “Context-Based Process Line,” International
Conference on Enterprise Information Systems (ICEIS), Funchal, Madeira, Portugal: 2010, pp.
277–282.

[18] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, Feature-Oriented Domain
Analysis, CMU-SEI, 1990.

[19] P. Fernandes, C. Werner, and L.G.P. Murta, “Feature modeling for context-aware software
product lines,” International Conference on Software Engineering and Knowledge Engineering
(SEKE), 2008, pp. 758–763.

[20] C. Wohlin, P. Runeson, and M. Höst, Experimentation in Software Engineering: An
Introduction, Springer, 1999.

[21] E.N. Teixeira, “OdysseyProcess-FEX: Uma Abordagem para Modelagem de
Variabilidades de Linha de Processos de Software,” 2011.

[22] ODYSSEY, “Odyssey SDE Homepage,” 2014.

[23] R.M. de Araujo, F.M. Santoro, P. Brézillon, et al., “Context Models for Managing
Collaborative Software Development Knowledge,” Workshop on Modeling and Retrieval of
Context (MRC), Ulm: 2004, pp. 61–72.

[24] R.M. de Mello, E.N. Teixeira, M. Schots, et al., “Checklist-Based Inspection Technique
for Feature Models Review,” 2012 Sixth Brazilian Symposium on Software Components,
Architectures and Reuse, Los Alamitos, USA: IEEE Computer Society, 2012, pp. 140–149.

[25] A.-W. Scheer, ARIS - Business Process Modeling, Springer, 2000.

[26] OMG, “Business Process Management Notation (BPMN) Version 1.2,” 2009.

[27] O. Armbrust, M. Katahira, Y. Miyamoto, J. Münch, H. Nakao, and A. Ocampo, “Scoping
Software Process Models - Initial Concepts and Experience from Defining Space Standards,”
Making Globally Distributed Software Development a Success Story, Berlin / Heidelberg:
Springer, 2008, pp. 160–172.

[28] I. Montero, J. Pena, and A. Ruiz-Cortés, “Business Family Engineering: Does it make
sense?,” I JISBD Taller sobre Procesos de Negocio e Ingenierıa del Software (PNIS),
Zaragoza, España: 2007, pp. 34–40.

[29] B. Simidchieva, L. Clarke, and L. Osterweil, “Representing Process Variation with a
Process Family,” Software Process Dynamics and Agility, Minneapolis, MN, USA: Springer,
2007, pp. 109–120.

[30] J. Bayer, W. Buhl, C. Giese, T. Lehner, A. Ocampo, F. Puhlmann, et al., Process family
engineering. Modeling variant rich processes, 2005.

[31] J.A.H. Alegria and M.C. Bastarrica, “Building software process lines with CASPER,”
2012, pp. 170–179.

[32] W. Bekkers, I. van de Weerd, S. Brinkkemper, and A. Mahieu, “The Influence of
Situational Factors in Software Product Management: An Empirical Study,” International
Workshop on Software Product Management (IWSPM), Barcelona, Catalonia, Spain: 2008, pp.
41–48.

[33] S. Brinkkemper, “Method engineering: engineering of information systems development
methods and tools,” Information and Software Technology (IST), vol. 38, 1996, pp. 275–280.

[34] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-based feature
models and their specialization,” Software Process: Improvement and Practice, 2005, p. 2005.

