
Verification of Software Process Line Models: A

Checklist-based Inspection Approach

1
Eldânae Nogueira Teixeira,

1
Rafael Maiani de Mello,

1
Rebeca Campos Motta

1
Cláudia L. M. Werner,

2
Aline Vasconcelos

1COPPE-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
2Federal Fluminense Institute, Campos dos Goytacazes, Brazil

{danny, rmaiani, rmotta, werner}@cos.ufrj.br, apires@iff.edu.br

Abstract. A Software Process Line (SPrL) approach aims to support systematic

process reuse by exploring the benefits of common aspects that exist in the pro-

cess domain and managing its diversity, i.e., its variability. In this context, a

SPrL must ensure the correctness, completeness and consistency among its arti-

facts and its related domain, in order to prevent the spreading of defects in its

derived processes. For supporting quality assurance activities in SPrL Engineer-

ing, inspection is considered a relevant tool to detect defects in related artifacts

through visual exam. However, the results from a recently conducted literature

review pointed out the lack of approaches on supporting SPrLs inspections. In

this paper, we present a checklist-based inspection technique (PVMCheck) for

supporting the detection of defects on SPrL models, especially in process fea-

ture models represented using OdysseyProcess-FEX notation. An evaluation of

PVMCheck is also presented, which results allowed us to identify its feasibility.

Keywords: Software Process Reuse, Software Process Line, Software Inspec-

tion.

1 Introduction

A great concern in organizations is related to the quality improvement of their prod-

ucts and services and meeting their customers’ needs is a continuous challenge. This

challenge includes the Software Development context in which a well-defined and

followed development process is frequently considered as crucial for delivering high-

quality products [1] [2]. Satisfying quality requirements entails that software process-

es must produce the expected results, be correctly defined, and any improvements

made should be in accordance with the objectives of the enterprise, which may

change quite often in highly competitive companies [3].

However, establishing a specific process from scratch for each project may not be

effective and even the establishment of software processes is frequently considered a

complex task. Process definition can be time consuming, error prone and cause nega-

tive consequences such as unnecessary activities that lead to a waste of time, the

omission of necessary activities and the failure to comply with the organizational or

international standards which may affect the quality of the final software product [4].

In this context, tailoring Software Reuse concepts [5] for supporting software pro-

cesses reuse can be considered helpful on bringing similar benefits such as those pro-

duced when reusing software product artifacts [6]. Thus, Software Process Line

(SPrL) [7] has emerged as an approach for software process reuse, based on the con-

cepts of Software Product Lines (SPL) [8]. A SPrL can be defined as “a set of pro-

cesses in a particular domain or for a particular purpose, having common character-

istics and built based upon common, reusable process assets” [9]. The set of activities

regarding the construction of SPrL typically includes characterizing, managing and

modeling both similarities and differences between process families and process fami-

ly members, i.e., their variability. However, one can see that the addition of a reuse

perspective in software processes modeling exposes them to a new range of anoma-

lies, especially semantic defects.

Validation and Verification activities such as Software Inspections represent an

important approach for ensuring models’ quality before its implementation, simula-

tion or execution, helping to deliver software quality [10]. Software Inspection can be

defined as a visual exam of a software artifact in order to detect anomalies [11], espe-

cially preventing the introduction of semantic defects in the early stages of software

projects, being considered one of the most efficient techniques for quality assurance

[12]. Since the first version of a software inspection process [13], it has been evolved

[14], and many inspection techniques have been developed for many types of soft-

ware artifacts. These techniques are performed individually and supported by instru-

ments such as checklists [15] [16] and guidelines as reading techniques [17] [18].

In order to support our research, a brief literature review was performed, searching

for techniques of software process model verification. As a result, a lack of verifica-

tion techniques concerned with SPrL inspection was observed, since the few ap-

proaches identified for detecting anomalies on software process models are not tai-

lored for supporting software process reuse [19][20][21]. In fact, these approaches are

typically designed for the syntactic model checking. Thus, it was observed that these

approaches were unable to support the verification of whether a given SPrL model,

even when correctly modeled from a syntactic perspective, correctly represents the

semantic content of a specific process domain, see Section 3.

Therefore, this work proposes a checklist-based inspection technique named

PVMCheck (Process Variability Modeling Checklist) for supporting the detection of

semantic defects in SPrL variability models. PVMCheck was developed mainly based

on the two technologies: OdysseyProcess-FEX [22], an SPrL meta-model and its no-

tation, addressing process domain variability representation in process elements and

relations and FMCheck [15], a checklist-based inspection technique for supporting the

detection of semantic defects in SPLs represented through feature models.

After a proof of concept, PVMCheck feasibility was evaluated through a quasi-

experiment. As a result, it was observed its feasibility, although it was not identified

an equivalence of the effectiveness and the efficiency between the inspections per-

formed by subjects having more experience and less experience in the study context.

This paper aims to present PVMCheck and its empirical evaluation. It is organized

into five sections including this Introduction. Section 2 introduces the concepts of

SPrL and process variability modeling, focusing on the OdysseyProcess-FEX. Section

3 presents the literature review performed in order to identify inspection approaches

for detecting anomalies in software processes models in the context of process reuse.

Section 4 describes the proposed inspection technique. Section 5 summarizes the

results from a proof of concept conducted as a first evaluation of PVMCheck and the

experimental study performed in order to evaluate its feasibility. Section 6 presents

the conclusions and proposes steps in order to improve the proposed approach.

2 SPrL and Software Process Variability Modeling

In order to achieve effective process reusability, efficient methods for gathering the

common and variable elements of specific processes and developing process defini-

tions that can be applied in a variety of situations are necessary [23]. SPrL is an ap-

proach proposed for supporting the systematic reuse of processes applying similar

principles established for SPL [8]. Thus, SPrL research aims at providing techniques

and mechanisms for: (i) modeling existing similarities and variability in a software

processes family; and (ii) supporting the customization of software processes accord-

ing to specific needs of the software process domain [24]. An initial set of require-

ments for SPrL representation was identified and used in the development of the Od-

ysseyProcess-FEX [22] meta-model and notation. The elements of the meta-model

were defined through the analysis of different process models, such as OpenUP, RUP

(Rational Unified Process), SPEM 2.0 meta-model [18], the process variability mod-

eling literature [24][26][27][28] and also the feature modeling presented in SPL ap-

proaches, more specifically the Odyssey-FEX notation [29], which was developed

based on well-known software feature model notations as FODA [30]. OdysseyPro-

cess-FEX meta-model is composed by three packages: Main, Relationships, and

Composition Rules [22]. The Main package describes the elements taxonomy, defin-

ing reusable process element categories (Work Units – Activity and Task, Role, Work

Product and Tool) and their properties. The variations are described through the vari-

ability and optionality concepts. The first one distinguishes the domain elements be-

tween configurable (variation points and variants) and fixed (invariants). The option-

ality concept treats the mandatory or not presence of elements in the domain.

A group of relationships having relevant semantic concepts to processes represen-

tation is provided. The Alternative is the relationship that describes the relation be-

tween the configuration points and their alternatives (variation points and each of

their variants). Other relationships provided are Aggregation, Composition and rela-

tions among work units, roles, work products and tools. Additionally, dependency and

mutual exclusivity relationships between process elements are represented through

inclusive and exclusive composition rules, respectively. A Composition Rule is com-

posed by expressions that can be literal, an elementary expression that designates one

single feature or boolean, which denotes a combination between features through the

use of boolean operators: AND, OR, XOR, NOT.

A set of restrictions and properties were defined that, together, compose well-

formed rules, the basis for syntactic model consistency verification.

Fig. 1 shows an excerpt from an example of the process feature model concerning

a Project Management domain, integrating individual reference models of Scrum, XP,

OpenUP, and RUP [31]. One of the domain activities is Project Planning, which is

composed by two mandatory tasks - Plan Project and Plan Iteration. The Plan Project

task is a domain configuration point (variation point), which can be implemented by

one of its optional variants: Plan Release or Plan the Entire Project. The Plan Project

task produces the Project Plan and is performed by the Project Manager. Analyst and

Stakeholders are additional and optional roles to support the task execution.

Fig. 1. Example: Project Planning Activity of Project management SPrL

3 Investigating approaches for inspecting software processes

models designed for reuse

Software inspection is an effective practice for supporting detecting semantic defects

in Software Engineering artifacts. Specialized literature presents a variety of inspec-

tion techniques for supporting this activity in diverse artifacts, such as requirements

specifications [18], UML models [16][17] and Software Product Lines (SPL) [15].

In this sense, a literature review on inspection approaches in process reuse area was

performed, especially concerned with SPrL, aiming at answering the following search

question: “What are the available techniques for inspecting software process artifacts

designed for reuse?”. Due to the comprehensiveness of SCOPUS digital library ob-

served when performing other systematic literature reviews (SLRs) [16][17], the au-

thors established this search engine as the only source. In fact SCOPUS agglutinates

publications from different and relevant sources in Software Engineering, such as

ACM, IEEE and others. The search string was derived from previous knowledge and

experience on performing SLRs [15] [16] for the inspection context and it was re-

viewed by a SPrL specialist, in order to address the body of knowledge regarding

software process reuse.

After the execution, 340 publications were retrieved. From this set, 22 were select-

ed for a comprehensive evaluation, based on full paper reading. In other to evaluate

the pertinence of these selected works for the research context, they were analyzed

according to the following requirements (previously established by the researchers):

• Only approaches based on the visual examination of artifacts [11] are considered as

inspection approaches, which excludes those specifying rules or heuristics without

their formalization and /or execution, or supporting the detection using automated

tools such as model checkers;

• The type of artifact inspected should be related to process, designed for reuse and

possibly in the SPrL context;

• It is desirable that the inspection approaches had been evaluated.

After full papers reading, it was concluded that none of the selected papers fulfilled

the two first criteria and also did not meet the third desirable one, showing the limita-

tion in current approaches, especially related to SPrL inspection. For instance, Akbar

et al. [19] present a process tailoring framework, not an inspection technique, whereas

Martínez-Ruiz et al. [27] propose and evaluate a set of new variability constructs for

software process engineering meta-model (SPEM) and no reference to possible de-

fects in the notation are presented. Lopez-Herrejon et al. [20] present the concern of

fixing inconsistencies in Software Product Line models, not addressing how to find

them. Travassos et al. [21] use inspections for supporting the design and maintenance

of software products through UML diagrams.

A previous work [15], developed by three authors involved in this work, was also

retrieved in the SLR. It presents FMCheck, a checklist-technique to support detection

of semantic defects in feature models describing SPLs. In this work, a quasi-

systematic review (secondary study) was conducted to better understand the state-of-

the-art of SPL inspections. It was concluded that there is a lack of technologies con-

cerned with SPL semantic inspection, where the approaches identified were con-

cerned with detecting anomalies in feature models using heuristics typically based on

syntactic and automated model checking. These approaches are important to avoid the

incorrect modelling, but are unable to support the verification of whether a given

feature model is best suited to represent a particular domain. Then, a first version of

FMCheck was evaluated through a proof of concept and then through a feasibility

study in vitro, in which significant evidence regarding its feasibility was observed.

4 PVMCheck

For better interpreting the defects detected on inspections, a clear categorization of

them is needed. The specialized literature presents different taxonomies for categoriz-

ing defects, and the one adopted by the presented approach is commonly applied for

classifying defects detected in software models [17] [18] (Table 1.). Modeling SPrLs

requires a deep understanding of the domain. The quality of the domain artifacts is

essential for the project success, since any non-conformity will be propagated to their

derived processes. Into this context, the verification of the semantic adherence be-

tween the domain description and the SPrL models through inspections can be con-

sidered a relevant contribution on promoting this quality.

Table 1. Defect Types, adapted from [Erro! Fonte de referência não encontrada.].

Defect Category Description

Omission Necessary information about the domain that was omitted in the artifact.

Incorrect Fact
Some information in the artifact that contradicts information requirements

specification or general knowledge domain.

Inconsistency
The information in certain part of the artifact is not consistent with other

information.

Ambiguity Some information is not clear, allowing multiple interpretations.

Extraneous In-

formation
Some information in the model is out of scope.

In order to avoid defects propagation from SPrL models to its derived processes,

early detection of defects in SPrL models is crucial. This section presents the steps

followed for developing the first version of PVMCheck, a checklist based inspection

technique for supporting the detection of defects on SPrL models. Since many issues

suggesting defects can be identified on performing such inspections, the following

subsection (Subsection 4.1) presents a first set of mapped discrepant cases, i.e., issues

suggesting defects [18]. Subsection 4.2 presents the first version of PVMCheck.

4.1 Discrepant Cases

Based on the set of requirements for process variability representation identified in

[22], Discrepant Cases (DCs) [16] were developed considering the defect types de-

scribed in [Erro! Fonte de referência não encontrada.] (see Table 1.). DCs are

sceneries that configure a discrepancy, which means a generic situation where a de-

fect could be detected. Through the SPrL representations analysis, specially using

OdysseyProcess-FEX notation, and its application in process domain modeling, the

considered discrepancies were basically related to:

• Consistency – between the elements in the model;

• Clarity – regarding the interpretation;

• Correctness – when compared to the textual description in the notation;

• Completeness – when compared to the domain.

A total of 159 DCs were identified. Some of them can be considered in a broader

context, addressing multiple notations. Other DCs are more specific to the Odys-

seyProcess-FEX meta-model and notation. Inconsistencies – cases such as misplacing

antecedent with consequent in the model Composition Rules, Incorrect Facts – cases

such as mistake mandatory with optional classification, and Omissions – cases such as

an element or relationship were omitted – are examples of the most common defect

types that can be observed when comparing SPrL models with the domain

description. This set of DCs identified doesn’t intend to cover all possible scenarios of

semantic defects that could be related to inspecting SPrL models. They can be

organized in the following groups:

A. Process Elements: 57 DCs related to clarity and completeness of process element

description and the correctness of process element category. These DCS are related

to the individual analysis of each process element and consistency between them;

B. Relationships: 63 DCs refering to the representation of relationships between

elements. This category checks if the relationships specified in the base document

have been properly represented in the model;

C. Composition Rules: 33 DCs related to semantics rules of dependency and mutual

exclusivity between process elements. The OdysseyProcess-FEX notation

describes these restrictions as textual description of logical definitions involving

two or more elements. So, these DCs verify the correct participation of all process

elements involved and the correct representation as a compostion rule;

D. Optionality: 2 DCs related to the optionality / mandatory classification considering

the whole domain as it is described in the base document; and

E. Variability: 4 DCs related with anomalies on the alternatives represented.

4.2 The Process Variability Model Checklist

Based on the DCs presented in Section 4.1 PVMCheck, a checklist-based inspection

technique to support inspectors detecting defects in SPrL models was developed. This

technique was tailored for supporting individual inspections performed by profession-

als that do not necessarily have previous domain knowledge to apply it, since textual

description, such as domain specification, is defined as a base document (oracle) to be

compared with the model during the inspection. It was developed based on software

process variability representation requirements, also including particular items related

with Odyssey-ProcessFEX meta-model and notation.

One challenge while developing a checklist concerns the amount of questions, be-

cause an excessive amount can lead inspectors to rework or weariness [16], but they

still have to be representative in order to accomplish the inspection task. Each DC was

created treating a specific situation of the meta-model. Some of them are very

similiar, being covered by the same question in the checklist. Thus, trying to over-

come the excessive amount of information of the checklist and considering its practi-

cal application, 34 checklist items were compiled from the 159 DCs. These items

were distributed in the following verification groups: Process Elements Verification,

Relationships Verification and Composition Rules Verification. The checklist items

related to variability and optionality are transversal properties and were covered by

verification items present in the three groups.

The checklist was structured in a spreadsheet with some orientation of how to ap-

ply the checklist for a group of verification items. It was described by the item num-

ber, the item description as questions and the possible answer alternatives: “Yes”,

“No” or “N.A” (not applicable, specifically for the model inspected).

Process elements verification is supported by 12 items, as presented in Table 2.

These items cover the group A of DCs (Subsection 4.1). It aims detecting defects

concerned with the clearness of the process elements attributes and descriptions and

the correctness and completeness of the process elements that compose the domain

scope.

Table 2. Items for process elements verification.

Id Process Elements Verification Items

1 Are all process elements clearly described?

2
Is there only necessary and sufficient information describing each process element from the

model, i.e., there isn't unnecessary information?

3 Is there any process element, although correct, out of the domain scope?

4 Is there any process element from the domain scope that has been omitted from the model?

5
Is there any attribute representing the description of a process element that has been omitted

from the model or has been incompletely described?

6 Are there process elements in the model that represent the same element in the domain?

7 Is there any process element that has been modeled isolated from the other elements?

8
Is the set of abilities and competences from each process element classified as role clearly

described and in conformance with the domain?

9
Are the optionality/ mandatory of the process elements from the model compliant with the

domain description?

10 Is there any incorrect comment associated to a domain element?

11 Is there any comment that does not add relevant information to the domain?

12 Is there any comment that should be represented as process element or attribute?

The relationship verification is composed by 14 items presented in Table 3 repre-

senting group B of DCs. It aims to verify the correct association between elements

verifying the restrictions imposed by the meta-model and the domain scope and the

correct classification according to the elements categories and the semantic of the

relationship. Composition rules verification is composed by eight items presented in

Table 4 supporting the group C of DCs.

Table 3. Items for Relationship Verification

Id Relationship Verification Items

13 Is there any relationship between process elements that has not been included in the model?

14
Is there any relationship between process elements that has not been compliant with the

domain description?

15
Are all relationships and their attributes represented in the model clearly described and com-

pliant with the domain?

16
Are all aggregation and composition relationships between process elements correctly repre-

sented in the model?

17

Are all domain configurations that can be represented by a set of alternative relationships

(relations between variation point and its variants) correctly represented in the model with

the elements correctly connected and their variability classification correctly defined?

18
According to the domain, are the cardinalities (minimum and maximum values) of the varia-

tion points correctly represented in the model?

19
Is the classification of optionality from a relationship between process elements compliant

with the participation type established by the domain?

Id Relationship Verification Items

20
Is there any relationship in which the variation point (origin) and its variants (destiny) are

not classified with the same process element category?

21
Is there any relationship in which its origin does not have the destiny represented by an

adequate category?

22 Is there any role, work product or tool not related to a work unit?

23 Is the optionality classification of each relationship compliant with the domain?

24
Is there any role in which its responsibility is not compliant with its participation in work

execution established by the domain?

25 Is there any work unit without a work product declared as its output?

26
Are the work products associated to a work unit correctly classified as inputs (in), outputs

(out) or modified (in/out) compliant with the domain?

Table 4. Items for Composition Rules Verification.

Id Composition Rules Verification Items

27 Are all domain composition rules represented in the model?

28 Is there any composition rule or expression in the model that is out of the domain scope?

29 Are all composition rules clearly described and compliant with the domain description?

30 Is there any inclusive composition rule that has been represented as an exclusive composi-

tion rule (or vice-versa)?

31 Is there any composition rule inconsistent in the model?

32 Is there any composition rule with an antecedent expression represented as a consequent

expression (or vice-versa)?

33 Are all the expressions having inclusive composition rule compliant regarding their manda-

tory?

34 Is there any exclusive composition rule in which its consequent expression includes process

elements classified as mandatory?

5 Evaluation of PVMCheck

The Evaluation of PVMCheck feasibility was performed through two activities: a

proof of concept and a quasi-experiment. Two members (P1 and P2) from the Exper-

imental Software Engineering Group at COPPE/UFRJ participated in the proof of

concept. Both subjects declared relevant experience on developing and applying soft-

ware processes, but limited knowledge regarding software process reuse and variabil-

ity modeling. After a brief introduction to OdysseyProcess-FEX and PVMCheck,

these subjects were invited to apply this proposed checklist for individually inspecting

the same SPrL model.

Analyzing the results, it was observed that the subject with more experience on in-

spections (P1) detected fewer defects (5) than the other subject (P2, 10 defects), alt-

hough the time dedicated for each inspection was similar (P1, 120; P2, 127). One

reason for these unexpected results could be found in the subjects answers to a follow

up questionnaire, in which it was observed that P2 considers that PVMCheck contrib-

uted significantly for its performance and for its learning on software inspection while

P1 has considered its performance was significantly hampered by the insufficient

content presented during the preparation regarding the technologies involved. How-

ever, P2 also pointed out the need of improving the description of our checklist items

and also the need of improving the training session. Thus, based on the results ob-

served in the proof of concept, improvements to the training session and the descrip-

tion of checklist’ items were performed.

Then, an experimental study (quasi-experiment) was planned for evaluating the

feasibility of PVMCheck. Based on [32] the following study goal was defined: to

analyze the inspection of SPrL models using PVMCheck in order to characterize, with

respect to its effectiveness (defects identified/ total existing defects) and efficiency

(identified defects/ time) in identifying defects and the opinion of the inspectors from

the perspective of Software Engineering researchers in the context of software devel-

opers (represented by undergraduate and graduate students from a Software course at

NES/IFluminense and Software Reuse Group at COPPE/UFRJ) inspecting SPrL

models in two different application domains. Considering the restriction of applying a

single task to each subject and the reduced influence of the inspector experience on

his/her effectiveness and efficiency when using a checklist [33], the following null

hypotheses were established:

H01: There is no equivalence between the effectiveness of SPrL inspections per-

formed by the group composed by more experienced subjects and the group com-

posed by less experienced subjects.

H02: There is no equivalence between the efficiency of SPrL inspections performed

by the group composed by more experienced subjects and the group composed by less

experienced subjects.

The study sample was composed by 18 subjects, 17 students a Software course at

NES/IFluminense and one student from Reuse Group at COPPE/UFRJ, who signed a

consent form and filled in a characterization form. The experience level from each

subject was evaluated considering the following attributes: academic degree; experi-

ence with software processes (developing, applying and reviewing); experience with

reuse (feature models, Odyssey-FEX, SPrL); experience with software inspections in

general. After analyzing the distribution of experience level between all subjects, it

was identified the opportunity of amalgamating these subjects into two distinct groups

normally distributed (Saphiro-Wilk test): group A, composed by the more experienced

subjects and group B, composed by the less experienced subjects. Then, it was identi-

fied that these groups are significantly different (Student t- test, p-value=0.99). This

composition is especially relevant in the context of the alternative hypotheses investi-

gated in this study (equivalence of effectiveness and efficiency between groups).

All subjects were trained in software inspection and domain description through

process feature models using OdysseyProcess-FEX notation and in the application of

PVMCheck. Two domain specifications and their respective SPrLs’ model regarding

the Project Planning activity designed using OdysseyProcess-FEX notation were used

as instruments: D1, a more complex domain combining Scrum and OpenUP (D1) and

D2, a simpler domain combining of OpenUP Basic and OpenUP (D2). These do-

mains are variations of the one described in Section 2, Fig. 1. Then, nine subjects

were randomly selected to inspect each domain. However, after the execution, it was

observed that only 13 reports had the identification of the related subjected.

The discrepancies reported by the 13 subjects were reviewed by two researchers

that classified each one as defect or false positive. The type of each reported defect

was also reviewed and reclassified, when needed. As can be seen at Table 5, none of

the subjects caught the higher level of effectiveness (1) and three of them didn’t de-

tect any defect. It is important to highlight that the domain distribution between sub-

jects was random.

Table 5. Execution Results

Grp. Subj. Domain Exp. Level Time #Defects Efficiency Effectiveness

A

JCC D2 0.604 90 0 0 0

GCBC D2 0.479 91 7 0.077 0.5

RMS D2 0.458 53 2 0.038 0.143

RSM D1 0.396 88 4 0.045 0.308

RNG D2 0.271 98 0 0 0

ROM D2 0.271 54 7 0.13 0.5

B

JGA D1 0.208 68 0 0 0

RVS D1 0.188 50 2 0.04 0.154

TCZ D2 0.167 79 4 0.051 0.286

TSC D2 0.167 74 1 0.014 0.071

LPD D2 0.167 74 2 0.027 0.143

LFS D1 0.146 55 4 0.073 0.308

PAS D2 0.125 92 3 0.033 0.214

It was observed that the distribution of effectiveness and efficiency by groups

(Erro! Fonte de referência não encontrada.) were normal (Saphiro-Wilk test) and

no outlier in any distribution was detected. However, it was also identified that the

variance in group A for both variables was significantly different from group B. In

addition, it was not observed a significant influence regarding the domain complexity

over the results.

Fig. 2. Distribution of Efficiency and Effectivenes in groups A and B

By applying the Equivalence test with a threshold of non-similarity of 10% (JMP

tool), it was not observed equivalence between the distributions of effectiveness and

efficiency in groups A and B. Thus, it was not possible to reject H01 and H02.

 Considering the inspections’ results as a whole, it was observed that the inspectors

were not able to detect all known defects in both domains (69% of D1 and 71% of

D2). However, it is important to highlight that the simpler domain (D2) was inspected

by nine subjects and five of them are from group (A) while the more complex domain

(D1) was inspected by only four subjects, three of them from group (B). These unex-

pected results can be explained due to the fact that only one, from the nine defects

detected in D1, was reported by more than one subject while eight, from the 10 de-

fects detected in D2, were reported by more than one inspector.

The subjects filled an evaluation form after their inspection. Most of subjects agree

or partially agree that the given instruments were helpful to support the activities and

both OdysseyProcess-FEX and PVMCheck items were easy to understand. Most of

them also agree or partially agree in applying PVMCheck for future inspections since

the inspection technique helped them to detected defects. However, most of them

disagree or partially disagree that their time were better applied using PVMCheck.

Five subjects also suggested improving the training session while five of them sug-

gested improvement in the checklist, including reorganizing its questions and reduc-

ing the amount of questions.

5.1 Threats to Validity

As threats to the validity of this quasi-experiment, the small sample size and the

limited experience of the subjects in inspection and software process reuse should be

considered. In addition, the limited number of inspected domains is another aspect

that can be pointed out. However, it is worth noting that no participant inspected the

same domain more than once. The absence of a complete list of defects specified prior

to study execution can also be considered as a threat to the validity. Some defects

were considered as ‘known defects’, which were detected during this quasi-

experiment. This directly affects the calculation of the inspections efficacy. It is also

important to note that this in vitro study was performed synchronously, with the par-

ticipants using the same resources (printed artifacts) to conduct their inspections. As

an internal threat, one can consider the fact that the same group that has developed the

technology evaluated it, even based on objective experimental practices. As an exter-

nal threat, it can be considered the definition of the study sampling. The population

was defined by convenience, typical in quasi-experiments [34].

6 Conclusion

Considering the lack of approaches observed in the specialized literature for support-

ing the detection of semantic defects on software process models, including SPrLs,

this paper proposed PVMCheck, a checklist-based inspection technique for support-

ing individual inspections on SPrLs. A preliminary version of the technique was sub-

mitted to a proof of concept and then an improved new version of the checklist was

submitted to a quasi-experiment, in which its feasibility was observed, although an

equivalence of the effectiveness and the efficiency between the inspections performed

by subjects having more experience and less experience was not identified in the

study context. As next step, PVMCheck will be improved based on the feedback pro-

vided by the subjects and then a new trial of the presented study will be performed.

We also intend to compare the effectiveness and efficiency of PVMCheck with ah

hoc inspections and to evolve the Odyssey environment to support SPrL verification

activities based on PVMCheck. Other future works are related to the improvement of

the whole SPrL verification context, automatizing its syntactic verification.

Acknowledgements

We would like to thank the proof of concept and quasi-experiment participants and

CAPES, CNPq and FAPERJ for financial support. We also thank to the Software

Reuse Group and Experimental Software Engineering Group at COPPE/UFRJ and

NES/IFluminense for supporting this work.

References

1. Osterweil, L., 1987, “Software Processes Are Software Too”. In: Proceedings of the 9th

International Conference on Software Engineering, pp. 2-13, Monterey, USA.

2. Fuggeta, A., 2000, "Software process: a roadmap". In: Proceedings of the Conference on

The Future of Software Engineering, pp. 25-34, Limerick, Ireland.

3. García, F. et al. (2006). FMESP: Framework for the modeling and evaluation of software

processes. Journal of Systems Architecture, 52(11), 627-639.

4. Pedreira O., Piattini, M., Luaces, M.R., et al.: A systematic review of software process tai-

loring. SIGSOFT Software Engineering Notes. 32, 1–6 (2007).

5. Frakes, W.B., Kyo Kang, K., 2005, “Software Reuse Research: Status and Future”, Journal

of IEEE Transactions on Software Engineering, v. 31, n.7, July.

6. Barreto, A., Murta, L., Rocha, A.R., 2011, “Software Process Definition: a Reuse-Based

Approach”. Journal of Universal Computer Science 17(13), 1765–1799.

7. Rombach, D., 2013, “Integrated Software Process and Product Lines”. In Perspectives on

the Future of Software Engineering, pp. 359-366. Springer Berlin Heidelberg.

8. Northrop, L., 2002, “SEI’s Software Product Line Tenets”, IEEE Software, v.19, n.4, pp.

32-40, July/August.

9. Washizaki, H., 2006, “Building software process line architectures from bottom up”. In:

Proceedings of the 7th International Conference on Product-Focused Software Process Im-

provement, pp. 415-421, Amsterdam, Netherlands, June.

10. Collofello, J. S., 1988, “Introduction to software verification and validation”, No.

CMU/SEI-CM-13-1-1, Carnegie-Mellon University, Pittsburgh, Soft. Eng. Institute.

11. IEEE., 2008, “STD 1028-2008: IEEE Standard for Software Reviews and Audit”.

12. Denger, C., Kolb, R, 2006, “Testing and inspecting reusable product line components:

First empirical results”. Proceedings of the 5th ACM-IEEE International Symposium on

Empirical Software Engineering, Rio de Janeiro, Brazil.

13. Fagan, M. E., 1976, “Design and Code inspections to reduce errors in program develop-

ment”. IBM Systems Journal 15 (3): pp. 182–211.

14. Laitenberger, O., 2002, “A survey of software inspection technologies”. Handbook on

Soft. Eng. and Knowledge Engineering, Vol. 2, pp. 517–555. World Scientific Publishing.

15. De Mello et al., 2014, “Verification of Software Product Line Artefacts: A Checklist to

Support Feature Model Inspections”. Journal of Universal Computer Science, 20(5), 720-

745.

16. De Mello, R. M., Pereira, W. M., Travassos, G. H., 2010, “Activity Diagram Inspection on

Requirements Specification”. In Brazilian Symposium on Soft. Eng, pp. 168-177, IEEE.

17. Travassos, G., Shull, F., Fredericks, M., Basili, V. R., 1999, “Detecting defects in object-

oriented designs: using reading techniques to increase software quality”. In ACM Sigplan

Notices, Vol. 34, No. 10, pp. 47-56.

18. Shull, F., Rus I., Basili, V., 2000, “How Perspective-Based Reading can Improve Re-

quirements Inspections”, IEEE Computer, vol. 33, no. 7, pp. 73-79.

19. Akbar, R., Hassan, M. F., Abdullah, A., 2012, “A framework of soft-ware process tailoring

for small and medium size IT companies”. In: Computer & Information Science, Interna-

tional Conference on, Malaysia, IEEE, pp. 914-918.

20. Lopez-Herrejon, R. E., Egyed, A., 2012, "Towards fixing inconsistencies in models with

variability." Proceedings of the Sixth International Workshop on Variability Modeling of

Software-Intensive Systems. ACM.

21. Travassos, G. H., Shull, F., Carver, J., 2001, "Working with UML: A software design pro-

cess based on inspections for the unified modeling language." Advances in Computers

Book Series, Volume 54, n.1, pp. 35-97.

22. Teixeira, E.N., 2014, “A Component-Based Software Process Line Engineering with Vari-

ability Management in Multiple Perspectives”, In: 18th International Software Product

Line Conference Doctoral Symposium, Florence, Italy.

23. Hollenbach, C., Frakes, W., 1996, “Software Process Reuse in Industrial Setting”. In 4th

International Conference on Software Reuse, Orlando, Florida, USA , pp. 22-30.

24. Junior, E. A. O. et al., 2013, “SMartySPEM: A SPEM-Based Approach for Variability

Management in Software Process Lines”. In Product-Focused Software Process Improve-

ment, pp. 169-183, Springer Berlin Heidelberg.

25. Martínez-Ruiz, T., et al., 2012, “Requirements and constructors for tailoring software pro-

cesses: a systematic literature review”. In: Software Quality Journal, 20, 1, 229–260.

26. OMG, 2008: “Software Process Engineering Meta-model”, In:

http://www.omg.org/technology/documents/formal/spem.htm

27. Martínez-Ruiz, T. et al. 2011, "Modeling software process variability: an empirical study",

In: Software, IET, 5, 2, 172,187.

28. Alegría, J.A.H., Bastarrica, M.C., 2012, “Building software process lines with CASPER”,

In: Proceedings of International Conference on Software and System Process, Zurich,

Switzerland, IEEE, pp. 170 - 179.

29. Fernanders, P., Werner, C., 2008, “Ubifex: Modeling context aware software product

lines”. In 2nd International Workshop on Dynamic Soft. Product Line Conf., pp. 3-8.

30. Kang, K. C. et al., 1990, A. S. Feature-Oriented Domain Analysis (FODA) Feasibility

Study”. Technical Report CMU/SEI-90-TR-21/ ESD-90-TR-222.

31. Magdaleno, A. M., Araujo, R. M., Werner, C. M. L., 2012, “COMPOOTIM: An Approach

to Software Processes Composition and Optimization”. In: Congresso Ibero-Americano

em Engenharia de Software, Buenos Aires, Argentina, pp. 1-14.

32. Basili, V., Caldiera, G., Rombach, H., 1994, “Goal Question Metric Paradigm”, Encyclo-

pedia of Software Engineering, v. 1, John Wiley & Sons, pp. 528-532.

33. Biffl, S. and Halling, M. “Investigating the influence of inspector capability factors with

four inspection techniques on inspection performance.” Eighth IEEE Symposium on Soft-

ware Metrics, 2002. IEEE, 2002.

34. De Mello, R. M., Travassos, G. H.. “An ecological perspective towards the evolution of

quantitative studies in Software Engineering”. In 17th Intl. Conf. on Evaluation and As-

sessment in Software Engineering (EASE), pp. 216-219, 2013.

