Automated Testing of Mobile Applications: A
Systematic Map and Review

Abel Méndez-Porras!, Christian Quesada-Loépez?, and Marcelo Jenkins?

Department of Computer Science, Costa Rica Institute of Technology®
Center for ICT Research, University of Costa Rica, San Pedro, Costa Rica?
amendez@itcr.ac.cr, cristian.quesadalopezQucr.ac.cr, marcelo.jenkins@ecci.ucr.ac.cr

Abstract. Context: Software testing is a costly and time-consuming
activity. Automated testing of mobile applications is considered complex
and difficult. Indeed, several factors such as a variety of inputs (user,
context, and environment) that a mobile application normally requires,
and the heterogeneity of the technologies make automated testing not
a trivial task. Two of the major challenges for automated testing are
creation of the appropriate test cases scenarios and to decide in which
devices to perform the testing. Objective: This paper reports on a sys-
tematic map and review. Automated testing approaches for mobile ap-
plications, testing techniques, and empirical assessment are identified,
mapped, and characterized. We investigate the major challenges in auto-
mated testing of mobile applications. An analysis and synthesis of these
studies is conducted. Method: A systematic mapping and systematic lit-
erature review research method has been conducted for identifying and
aggregating evidence about automated testing of mobile applications.
Results: A total 83 studies were identified. The results were tabulated
and synthesized to provide recommendations to practitioners about au-
tomated testing of mobile applications. The main approaches identified
were model-based testing (30%), capture/replay (15.5%), model-learning
testing (10%), systematic testing (7.5%), fuzz testing (7.5%), random
testing (5%) and scripted based testing (2.5%). Conclusions: In recent
years, the number of proposals for automated software testing of mobile
applications has increased. In 40% of the studies, the testing techniques
use GUI-based models of the application. Further research is needed, in
order to improve the creation of effective and efficient models for auto-
mated testing of mobile applications.

Keywords: random testing, model-based testing, model-learning testing, sys-
tematic testing, capture/replay, scripted-based, systematic literature review

1 Introduction

Mobile applications become strategic business tools and have changed the busi-
ness landscape. They have also expanded to meet the communication and in-
formation sharing needs of social networks. Nowadays, there are a variety of

2 Automated Testing of Mobile Applications

new scenarios and applications for mobile devices. Indeed, users and develop-
ers expects reliability, ease of use, performance and security. Unfortunately, the
quality of mobile applications is lower than expected. According to Amalfitano
and Fasolino [1], this lack of quality is due to the very rapid development process
in which software testing is neglected or carried out in a superficial way.

Software testing of mobile applications is not a trivial task due to several
factors such as the variety of inputs that a mobile application normally requires
and the heterogeneity of the technologies used to implement them. The variety
of inputs that a mobile application normally requires (such as user input, the
input context and environment) makes it very difficult to design appropriate
test cases to detect faults. Several studies state the importance of the context
in which mobile applications are executed to ensure quality [2, 3, 4]. Performing
testing on multiple platforms is needed in order to ensure quality.

To face the growing demand for high quality mobile applications, developers
must spend more effort and attention on the processes of software development.
In particular, software testing and automated testing play a strategic role in
ensuring the quality of these applications. Understanding about how automated
testing of mobile applications is carried out in the practice is needed. Our study
makes the following contributions:

— It identifies the main approaches for automated testing of mobile applications
and the main research trends over time.

— It analyzes the available evidence on automated testing of mobile applica-
tions regarding its usefulness and accuracy.

This results will help professionals to make informed decisions based on ev-
idence about the selection of automated testing approavhes. The remainder of
the paper is structured as follows: Section 2 presents the related work. The re-
search design of the systematic map and review is described in Section 3. The
results of the map and review are presented in Section 4 and Section 5. Finally,
Section 6 discusses the results and Section 7 concludes the paper.

2 Related work

In this section, a review of secondary studies that have been conducted in mo-
bile automated testing is presented. Muccini et al. [2] conducted a literature
survey on new lines of research in software test automation for mobile applica-
tions. In this paper, authors conclude that mobile applications are different than
traditional software. They also state that the challenges for automated testing
of mobile applications seems to be related to the context and the mobility of
applications. They state that the performance, security, reliability, and energy
used are strongly affected by the variability of the environment in which the
mobile device moves. This study is limited to only 18 studies. Kirubakaran and
Karthikeyani [5] conducted a literature survey (21 studies) where they confirm
previos results in [2].

Automated Testing of Mobile Applications 3

Amalfitano et al. [6] analyzed challenges and open problems in the field of
software testing for the Android platform. They described guidelines, models,
techniques, and technologies for software testing in Android applications. They
developed a comprehensive explanation of unit, integration, and system test-
ing for Android applications. They also addressed the issue of software testing
regarding to non-functional requirements: performance testing, stress testing,
security testing, compatibility testing, usability testing and accessibility testing.
Finally, they have listed tools and frameworks for automated testing in Android.

The main difference with our work is that these studies are not systematic
literature reviews.

3 Research design

Secondary studies aggregate evidence from primary studies [7]. To increase the
validity of the results, it is important to be systematic when evidence is ana-
lyzed. A systematic review (SLR) is a well-defined methodology that enables
the identification, evaluation and interpretation of all available and relevant evi-
dence related to a specific research question, subject matter, or event of interest
[8]. SLRs collect and synthesize empirical evidence from different sources [9].
Systematic mapping studies (SMS) provide an overview of a research area, and
identify the quantity and type of research and results available within it [10].
Mapping and review questions have different aims. A SMS question aims at
structuring a research area and shows how the studies are distributed. A SLR
question is related with the evidence and provides recommendations based on
the strength of this evidence [10]. The following sections detail the protocol for
the SMS and the SLR according to the guidelines proposed in [9, 10, 11| and
considering the recommendations of [12, 13].

3.1 Map and review questions

A systematic map and literature review have been conducted in order to iden-
tify, map, analyze and characterize automated testing in the context of mobile
applications. Table 1 shows the questions related to systematic map and review.

3.2 Search strategy

The search strategy aim is to find all relevant primary studies for answering
research questions. First, the search string is defined and relevant databases are
selected. Then, the studies inclusion and exclusion criteria and procedure are
defined.

The definition of the search string is based on population, intervention, com-
parison and outcome (PICO) [14]. The search terms used in the map and system-
atic review were constructed using the following strategy [15]: (1) major terms
were derived from the research questions by identifying the population, interven-
tion and outcome, (2) alternative spellings and synonyms were identified base on

4 Automated Testing of Mobile Applications

Table 1. Mapping study questions and review study questions

Mapping questions

Review questions

MQ1 Which are the main journals and
conferences for automated testing of mo-
bile applications?

MQ2 Which are the main authors for au-
tomated testing techniques research?
MQ3 How is the frequency of papers dis-
tributed according to their testing ap-
proach?

RQ1 What are the challenges of auto-
mated testing of mobile applications?

RQ2 What are the different approaches for
automated testing of mobile applications?
RQ3 What is the most used experimental
method for evaluating automated testing
of mobile applications?

a reference set of relevant papers. The reference set was created including the ar-
ticles that are relevant to be included in the review. The reference set consisted
of the following references: [16, 17, 18, 19, 4, 20, 21, 22, 23, 24]. (3) Besides,
alternative terms were included via expert knowledge in the field, (4) the string
was constructed with the Boolean OR for alternative spellings and the AND to
link PICO categories. Finally, (5) the search string was piloted in several runs in
order to reduce the quantity of noise of the results. An excerpt from the search
string is shown below: (“mobile apps” OR “android apps”) AND (“systematically
testing” OR “automated testing”) AND (“framework” OR “tool”)!.

The papers were searched based on title, abstract and keywords. The search
string was used to search the following four digital libraries: SCOPUS (<sco-
pus.com>), IST Web of Science (<www.isiknowledge.com>), IEEE Xplore (<iee-
explore.ieee.org>), and Engineering Village (<www.engineeringvillage.org>).

The search was run on the four digital libraries many times iteratively. In
each iteration the outcomes were analyzed and the search string was refined.
This cyclical process stopped when the resulting studies were related to the
testing of mobile applications. The goal of this preliminary check was to assess
the effectiveness of the search string.

The selection of primary studies was conducted in three stages. In stage
1, applying the search string to the digital libraries performed an automated
search. In stage 2, duplicates were identified and removed. In stage 3, we applied
the inclusion/exclusion criteria to each study. The criteria are related to the
availability of the study, their focus on automated testing, techniques and tools,
and automation?.

Two of the authors evaluated each study according to the inclusion and exclu-
sion criteria. The selection procedure was conducted following these steps®: Two

! Full search string is available in:
http://eseg-cr.com/research/2014/map and_review.pdf

2 Full inclusion/exclusion criteria are available in:
http://eseg-cr.com/research/2014/map and review.pdf

3 Full selection procedure is available in:
http://eseg-cr.com/research/2014/map and_review.pdf

Automated Testing of Mobile Applications 5

authors read the titles and abstracts separately. The papers were categorized as
follows: (1) Accepted (2) Rejected and (3) Not defined.

The search was conducted (piloted, refined, and finished) during the first
semester of 2014, and the quality assessment, extraction, mapping and analysis
of the data on the second part of 2014. The preliminary results were documented
and reviewed in this period.

3.3 Study quality assessment

Quality assessment is concerned with the rigor of the study and the applicability
of the automated testing techniques for mobile applications. The quality of the
papers was evaluated as regards to their objectives, context, test case derivation
and execution, automation process, automation tool, tool availability, formal
specification, empirical validation, findings, and conclusions criteria®. Studies
were assessed using a checklist. The minimum evaluation that the study may
receive is zero and the maximum is 31.

3.4 Data extraction

Based on the selection procedure, the required data for answering the map and
review questions were extracted. This information is additional to the study
quality criteria. A data extraction form was created and filled in for each study.
The data extraction form has three different sections in which the following
information was captured:

— The first section captures general information about the paper such as: data
extractor, title, author, year, journal, conference, study identifier.

— The second section extracts data about the objectives, automated testing
techniques, context, test cases creation and execution, tool support, finding
and conclusions.

— The third section extracts information about the empirical validation.

The data extraction process was conducted by the principal author and val-
idated by the second author in a random sample of studies. Extracted data was
summarized in separate tables and later consolidated by both authors in a sin-
gle file. Based on the extracted data, the analyses for the map and the review
questions were conducted.

3.5 Analysis

The most advanced form of data synthesis is meta-analysis. However, this ap-
proach assumes that the synthesized studies are homogeneous [7]. Meta-analysis
is not applied in this review because varieties of model and evaluation approaches

4 Full quality assessment checklist is available in:
http://eseg-cr.com/research/2014/map and_review.pdf

6 Automated Testing of Mobile Applications

have been discussed in the selected papers. Dixon-Woods et al. [15, 25| describe
the content analysis and narrative summary as approaches to integrate evidence.
Content analysis categorizes data and analyzes frequencies of categories trans-
ferring qualitative into quantitative information [25]. Some categories relevant
for this review were identified in selected studies according to the recommenda-
tions in [10]. Narrative summaries report findings and describe them. Evidence
in diverse forms can be discussed side by side [25]. This approach is suitable to
synthesize the evidence of the selected papers of this review.

All studies were evaluated using the proposed section 3.3. Analyze was fo-
cused on the 44 studies with the highest rigor (tables 2 and 4).

3.6 Threats to validity

This section analyzes the threats to the validity for this study and the actions
undertaken to mitigate them. Relevant limitations were the authors’ bias, the
exclusion of relevant articles, and the generality of the results. Search process:
It is based on four digital libraries relevant in software engineering. Study se-
lection: It is based on title and abstract. The inclusion and exclusion criteria
were defined, evaluated, and adjusted by two researchers in order to reduce bias.

Quality assessment: a single researcher conducted the quality assessment
checklist. Detailed criteria were defined to make the evaluation as easy as pos-
sible. The review protocol was peer-reviewed to assure the clarity of the quality
criteria. Data extraction: a single researcher conducted the data extraction us-
ing a detailed extraction form to make the results as structured as possible. The
review protocol was peer-reviewed to assure good understandability and clarity
for the extracted information. After the extraction, a single reviewer checked the
extraction forms to review if something was missing. Test-retest often suggested
for single research was not conducted [26]. Generalization of the results:
it is limited by the generalizability of the studies included in the review. The
context information was extracted according to [27] to identify relevant context
information in software engineering research.

4 Mapping results

4.1 Number of identified studies

We obtained 248 studies and after removing duplicates, 129 studies remained.
Two authors applied the inclusion/exclusion criteria on the 129 studies inde-
pendently and then compared results. Throughout the detailed review further
articles were discarded, leaving 83 primary studies® being included in the analysis
of this map and review.

5 Study quality assessment and study references are available in:
http://eseg-cr.com/research/2014/map and_review.pdf

Automated Testing of Mobile Applications 7

4.2 Publication (Mapping Question 1 and 2)

The principal authors are: Domenico Amalfitano, Anna Rita Fasolino and Por-
firio Tramontana. They have published four studies together. Moreover, Kon
Kim Haeng and ITulian Neamtiu have published four studies. Mukul R. Prasad,
Sergiy Vilkomir and LIU Zhi-fang have published three studies.

Table 3 shows top six forums for automated testing of mobile applications.
The main forum where studies about automated testing of mobile applications
were published was ICSE where 9 studies were published.

4.3 Trends over time (Mapping Question 3)

Figure 1 shows the distribution of selected primary studies published before
July 26, 2014. The 44 studies reporting the highest evaluation are shown, the
evaluation was performed following the procedure described in section 3.3. The
number of publications has increased in recent years. In the last three years, many
approaches have employed model-based testing technique. The aim is to create
a model of the application under test. Creating a good representation model of
the application under test is one of the main tasks of the analyzed studies (40%).
The main approaches identified were model-based testing (30%), capture/replay
(15.5%), model-learning testing (10%), systematic testing (7.5%), fuzz testing
(7.5%), random testing (5%) and scripted based testing (2.5%).

5 Review results

This section describes the results related to the systematic review questions
presented in section 3.1. The results of each study were tabulated and analyzed.
Techniques for automated testing of mobile applications have been classified into
model-based testing, capture/replay, model-learning testing, systematic testing,
fuzz testing, random testing, scripted-based testing techniques [28, 29, 30].

Model-based testing builds a model of the applications being tested and use
this model to generate test cases. GUI models can either be constructed man-
ually or generated automatically. Capture/replay can be captured events while
the test cases are executed and then replay them automatically. Model-learning
testing builds a model of the GUI application in conjunction with a testing
engine and guide the generation of user input sequences based on the model.
Systematic testing automatically and systematically generates input events to
exercise applications. Fuzz testing generates a large number of simple inputs to
application. Random testing generates random sequences of user input events
for the application being tested. Scripted-based testing requires manually writing
test cases before execute automatically.

Table 2 provides an overview of studies that follow the techniques described
above. In this and all forthcoming tables the studies are ordered from highest to
lowest rigor based on quality criteria.

Table 4 shows the approaches focused on platforms, web services and infras-
tructure and others. This group is based on platforms that support real devices

8 Automated Testing of Mobile Applications

i i i i
"""""" Bystematic- - -~

i i
- Seripted-based - - - |

-.-.Model-learning - - -

-----Model-based- - - - - !

0o o oo—

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Fig. 1. Distribution of studies published per year and techniques

that can be accessed locally or through the cloud. The categories were created
using the technique de keywording proposed in [10].

6 Discussion

In this section we try discussed the three research questions. RQ1. What are
the challenges of automated testing of mobile applications? Variety
of context events, fragmentation in both software and hardware, and resource
limitation in mobile device are discussed.

Variety of context events. Abowd et al. [31] define a context as: “any infor-
mation that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is including the user and applications themselves”.

The behavior of smart mobile devices is highly interactive, according to (S55).
Mobile applications are affected by this interaction. Users consistently perform
actions on their applications and the applications respond to these actions. Au-
tomating this type of testing scenario is complex.

According to (S17), a mobile application receives user GUT input and envi-
ronmental context events. User GUI input such as keyboard events and touch
events. Environmental context events that include physical context events and
social context events. Physical context events obtained from the built-in GPS
receiver, Bluetooth chips, accelerometer sensor, humidity sensor, magnetic sen-
sor and network. Social context events, like nearby MSN friends, the current
activity the user is up to, and even the user’s mood. In (S33), these events are
called “context events”. The mobile application must accept and react to the
changing context events as inputs to produce appropriate outputs. Modeling the
context events of mobile applications for automated testing is one of the major
challenges currently.

9

Automated Testing of Mobile Applications

systx Aoeatrad pue Ljranoes Surky uorty
-1juapt ul pre jeys sjpiodor sejersus8 pue sjodrew dde oy pajjruqns -driosep
1z suorjpeorjdde suoydyrews sezA[RUE JRY) 9O1AISS UOIJEPI[RA A}LINDOS Y uorpdrIosep 1ea[d ON proapuy 1es[o oN Sul}se) o1yewa3sAs 110Z Z8S
owry owes oYy je seuoyd uory
a[rqow o[drj[nNW Ul UOIINDOSXd 3509 pajeadol 9jrWIOINE O} pUER SUOIY sauoyd a[iqow 0899 BINON -duosep
1z -eondde Hegp 105 podoloasp sem wejsAs Suiyse; [ejuewredxe y omj pue suonjeordde Auely —UBIQUAS 1¥S[0 ON Kerdea/eanydey 900z 228
suoryeoryd ojdurexe Sur
1z pomoys ore s3[Nsed ON uorjeordde ojdwes v -de eaer o[dweg -3593 Pposeq-[9POIN 900T e1s
souoyd [rejex gO uerquig ordijnuwr yserd A[njssod SO ueiquig Apngs
Tz -ons jeys syndur pewrojjewr QQO‘€T UBY) SI0wW pajerouss YIJVIN UO paseq sjospuey [rejel ¢ uelquAS asen Sunyse], zzng 0102 S
suoryaes
-se Sursn ‘suorjesijdde s[iqow jo soijiadoad juspuadep 9[0AD 9)I] jO uorty ardurexe Sur
(44 sourwIojuod Suryse) 10j pojussard sem yorvoxdde 3se3 peseq-jrun y -eorpdde pedsjoN s.0[8005H proapuy srdweg -3s93 poseq-[9pOoIN 10T ¥LS
uorgeord ardurexs
zz suorgeorjdde gOT 10§ [003 Surysey A3[Iqesn pejewojne uy -de odAro301d Surreys oyiq v sot eidweg Lepdey/eanyded $10z 8zS
poaaiyoe Suises proapuy ojdurexs
2z ewy uopnooxs jJo %408 APjewixodddy ‘PojesId olom SOSED 3803 TZ j0ofoad eiqowt suQ pue gO1 ojdweg Kerdea/eanydey 1102 128
arduwrexe
zz pomoys o s3[Nsed ON poymadsup proapuy odweg Suiysel, zzng ¢10Z 9S ‘SIS
SBIJIATIJ0® 09 PO3IOLIIP o' jey) sofessowr Apnjys
€z 9soyj jo uorjediunwwod uorjedrjdde-iajur uo sasnooj yorvoxdde uy suorjeorjdde ¢ proapuy ose) Surlyse) oryewaysLg €10¢ 998
wes) YOS Ul SI09U
-18ue Suryse) g oIe a19yj pue Apngs
€T Suryse) [enurw uevyj s8N SIOW PUY §3S93 POjYRWOINY PaIpUNOoj aie swesa) Sulyse) ¢ urviquig aseD Lepdaa/sanyded L00T ggs
$901A0p snosusorsjey o[dIjnuw uo ung SOOIASP S[IOW [BISASS UO Apnys Surysey
€z Aew ey uorjeordde 3o[pPIN ®AB[® jOo SuI}Se) sejewojne sowiel pedojdep oiem suorjeorddy eaep osen poseq-pa3diads 6002 £Fs
S)BWIOJ ©YEP O9PIA €
uo 197ZNgproa(SUISn poajsey Apnjs
cz poyLIeA ST A}1[IqeISPUNA © pue punoj oie s8nq y odw sdde Suike[d-0epia g proipuy osen Surysel, zzngd €107 8es
JoxIRIN
o8eion00 poyjew pue proipuy oyj ur poysiqnd Apnjs Sur
£z ©8®I0A00 ©9pOD JO SWIS) UI POmMOYUS sem onbruyoey jo ssousalyoeym suorjeordde prodpuy [€91 G PIOIpUY osen) -3593 Pposeq-[9POIN £10T ces
S10110 mou pue pajioder useq Apesie J03aIN PIOIPUY U} Apnys
€T aaey jey) Ioxro odA3 pue juoad ‘A31a130® pojrodar onbruyoey oy, ur suorjeordde ieindod Qf proapuy aseD Surysey wopuey T110T ANMM
w}rI08[e [esI0ATI) Apngs Sur
€z pouSisep -[[em ' UM S[[)Y) OYJ OSIOARI] DIJRWOINE S[MBIDPIOI] suorjeoridde piom-[eas ¢ proapuy ose) -1s93 Pposeq-[oPON FT10T 62S
onbruyoog
wopued yim paieduwod usym aanrej 3siy osodxse o3 peamnbex sury Apngs Suryseg
€7 oY) puer sased 393 JO I9qUWINU oY) 2onpal yjoq ueo onbruyoey oy, suorjeoridde piom-[eas 9 proapuy osey wopuer oandepy 010% LIS
POALIOD 9 UBD 9}INS 359} DAISUIIXD uory uory
ue YOIYym wWoij [opowt 4s9} ® suysp o} (NJAA) SION 1139d 2anjyesq -drrosep -driosep Sur
144 orwreukq pue (LgN) Suiyse], peseq-jepoJy Surd[dde yoroidde uy uo14driosep Iea[d ON Ied[d ON 1e9[0 ON -3S9% Pposeq-[epoN Z10% ZLS
sosed 1509 pojerauss oyl ysrm Sur uorty
-}599 @0UBWIOJUO0D swiojiad pue waojje(d o[rqowr ayjy jJo uoryeoyroods -driosap Sur
$Z [BWI0J 9Y) WOIJ SOSED 4593 SojeIousld A[[edljewa)shs ylomowely y uorpdrIosep 1ea[d ON proapuy 1es[o ON -39} Poseq-[opPOoN ZTI0Z 168
SINOY ¢ uRY) SSO[Ul POJD}AP srdwrexe Surysey
ez A[reorjewoine ‘sSnq pejuswnoopun j pojeasar uorjedijdde ue 1oqg uorjeoijdde piom-[ess suQ proapuy srdweg Surures[-[opPON ZT10T 188
arduwrexa Sur
cz PomOYS ST o LV JO A31[1qESN pU® SSOUSATI}OOYH ordwexe ojdweg proapuy ojdweg -3s09 poseq-[opoIN 1102 68
28®10A00 poOYOW %% 9E-EG 6T PUR SuoT) Apngs Sur
9z o8e10A00 A1A130% % TT F9-6E°6C @Ad1Yyoe senbruyoe) uorjeiordxe oy, -eorjdde proipuy iendod gg proapuy ase) -39} poseq-[9pPoIN £10T 0LS
Surdiem-owy uornoexe pue ‘A3rfiqronpod Kelg o[800n ur Apngs
9z -ox 8nq ‘Ayriqegeadar 10y A[nysseoons poardde oq ued yoeoadde oy, suorjeoridde priom-jeal (0T proapuy aseD Lerdea/eanyde) €107 ¥98
Apngs poseq
9z s8nq meu (T peojroder YVIINDIGOIN suorjeorydde soanos-uado j proapuy aseD Surures[-[opPOoN F10Z 0SS
Kerg o[800nH uo
Lelg o800 uo sdde eo13 000‘T doy suorjeordde es13 QQQ‘T pue Apngs poseq
9z a9 jo g ur s8nq g pue ‘sdde Qg oy3 jo 2 ut sSnq g punoj prorpoulq suorjesridde sornos-uado (g proapuy aseD Surures[-[oPON £10% 6€S
SJUDAD 10309UUOD Apngs Sur
9Z oI® SjU8A® O) JO %EG 'SPUSAD (T JO SPSISUOD 9SED 1S9) ' ‘oSelosr uQ) suorjeoridde piom-[eas g proapuy ose) -1s03 Pposeq-[oPON £10% 128
sdde 9 Apngs Sur
9z 103 $3s93 09 JO [®303 ® Buisn ‘s¥nq gg Jo (€303 € punoy WNLNVAD suorgeoridde 9 proipuy aseD -1893 POseq-[d9POIN F10T 9eS
onbruyoes uorno Apngs
97 -9X@ DI[0DUOD SAIRU 9Y} URYJ JUSIDYYS dI0wW A[JueOYIuSIs ST 0AH OV suorjeoridde piom-[eas g proapuy ose Suryse], o1yewaysAS 10T %28
Apngs Sur
92 Arecryewojne L(nj ‘sfppow L3rpenb-ySiy pejoriixe A[jusIdiye 31qiQ suorjeorjdde eoanos-usado g proapuy ose) -1899 poseq-[oPOIN €£10T LS
Surysey peseq-g, 7 joxaew suorjeoridde Apngs Surysoy
6T pue wopuer yjoq swaojiddino ‘sdde xerdwoo 103y yorvoadde oy, usdo proig-q woay sdde (T proapuy oseD) Surures[-[oPOoN £10% f474s]
WSIUBYOOW JUOIUI OYJ UO POsEq SOIFI[IqRISU[NA ©Iep BUI30939D Apngs Sur
62 e swre yorym suorjedijdde proipuy jo poyjouw Suigsa) A41indes y suorjeoijdde piom-[ear g proapuy ose) -1899 pose]-[9POIN £10T ges
uorg
a031yg auwod3InQ 204nos BjE(3IX93U0 -vnieay yovoaddy aeox Apniyg

onbruyoe) paforduws ay3 03 SUIPIOODE SIIPNIS BY) JO MIIAIIAQ g 2[q.],

[H]

Automated Testing of Mobile Applications

10

Table 3. Publications in journals and conferences

Journal or Conference

Study

Tnternational Conference on Software Engineering (ICSE)

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) (LNCS)
Communications in Computer and Information Science (CCIS)
ACM International Conference Proceeding Series (ACM-ICPS)
International Workshop on Automation of Software Test (AST)

International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

wWwe o o

[H]

Table 4: Approaches focused on platforms, web services and infrastructure

Study Year Approach Evalua- Context Data source Outcome Rigor
tion
S41 2014 Malware detectors Case Android 500 applications from FLOWDROID achieves 93% recall and 86% precision, greatly 26
study Google Play Store outperforming the commercial tools IBM AppScan Source and
Fortify SCA
S58 2013 Spectrum-based Case Android 4 open-source applications The collected results show that the used instrumentation en- 26
fault localization study tails an average time overhead of 5.75% (with standard deviation
technique 0=2.49)
S73 2012 Online platform No clear Android Testdroid has attracted over An online platform for automating UI testing on a variety of 24
for automating UI descrip- 1000 developers and has con- mobile handsets
testing tion ducted over 20000 tests
S31 2011 Automated testing Case Android 5 smartphones are connected A decentralized testing automation framework that accom- 23
of service-oriented study to a server plishes distributed test sequencing and control for service-
distributed appli- oriented applications was presented
cations
S61 2009 Performance test- Case Java Two java applications A performance unit test method for mobile applications using 23
ing study MObilePBDB was proposed and the mobile performance unit
test tool PJUnit was proposed
mww, 2011 Domain-Specific ~ No clear MultiplatformNo information available MATeL can be easily adapted and/or extended, plugged into any 22
Modeling Lan- descrip- industrial test bed as well
guage tion
S11 2012 Automation test- Sample Symbian Sample application MobTAF has been proposed which performs automation testing 22
ing of mobile example of mobile applications directly on the mobile devices
applications di-
rectly on the
mobile devices
WMM“ 2013 Testing as a Ser- No clear Android No clear description The high-level architecture of TaaS solution and the detailed 21
vice descrip- architecture of the CTOMS platform were described
tion
S60 2009 Performance test- No clear Java No clear description A mobile performance unit testing tool that supports the func- 21
ing in Test Driven descrip- tional testing in the development process of unit testing envi-
Development tion ronment and also supports performance unit testing generation
and performance automation
S69 2011 Touchscreen meta- No clear Android No clear description Five test scenarios pertaining to the presented meta-test model 21
testing model descrip-
tion

Automated Testing of Mobile Applications 11

Fragmentation in both software and hardware. Fragmentation is the main
problem related to mobile devices, and it is manifested in both software and
hardware, in (S51, S73, S17) this problem is discussed. Applications behave
differently on each device, and usability and performance are affected. Mobile
operating systems are still in a rapid iterative upgrade process. According to
S55, the diversity of mobile devices and platforms is reducing the reusability
and maintainability of test cases.

Changing mobile ecosystem. According to (S83), mobile applications offer
different services through an end-to-end mobile ecosystem, composed of mobile
devices, mobile networks and application servers. These components exhibit sig-
nificant variations in their behavior. These changes in context are perceived by
mobile applications and affect their function. They need to be tested against
variations exhibited by each one of the above-mentioned components.

According to (S83), mobile networks are comprised of many factors outside
the control of the application, such as network connectivity, bandwidth, and
congestion. Mobile applications should be evaluated to ensure that they behave
properly when they are subjected to such network conditions. Testing the appli-
cation against a variety of network conditions is required.

Resource limitation in mobile device. Resource limitation is still a topic that
we should consider to ensure the quality of mobile applications. Device limi-
tations vary in terms of memory, processing power, screen type, battery level,
storage capacity, platform version and input method, according to (S12). Lim-
ited resources on a mobile device can influence the testing process. The testing
tool or process consumes resources, and it may affect the normal execution of
the mobile applications themselves, according to (S17).

RQ2. What are the different approaches for automated testing of
mobile applications? In the literature, there are many approaches to address
the automated testing of mobile applications. In section 5 they are presented.

There are some tools available to download on line, below some of them are
discussed. Dynodroid (S39) uses model learning and random testing techniques
for generating inputs to mobile applications. It is based on an “observe-select-
execute” principle that efficiently generates a sequence of relevant events. It gen-
erates both user interface and system events, and seamlessly combines events
from humans and machines. In MobiGUITAR (S50) the application model is
created using an automated reverse engineering technique called GUI Ripping.
Test cases are generated using the model and test adequacy criteria. A3E (S70)
uses model based testing techniques. This tool systematically explores applica-
tions while they are running on actual phones. A3E uses a static, taint-style,
dataflow analysis on the application bytecode in a novel way, to construct a
high-level control flow graph that captures legal transitions among activities
(application screens). It then uses this graph to develop an exploration strategy
named Targeted Exploration, which permits fast, direct exploration of activities,
including activities that would be difficult to reach during normal use. It also
developed a strategy named Depth-first Exploration that mimics user actions for
exploring activities and their constituents in a slower, but more systematic, way.

12 Automated Testing of Mobile Applications

SwiftHand (S42) generates sequences of test inputs for Android applications. It
uses machine learning to learn a model of the application during testing, uses
the learned model to generate user inputs that visit unexplored states of the
application, and uses the execution of the applications on the generated inputs
to refine the model. Also, the testing algorithm avoids restarting the application
during testing.

Strategies for record and replay have also been explored. In (S64) RERAN
is described. It permits record-and-replay events for the Android smartphone
platform. It addresses challenges of sophisticated GUI gestures by directly cap-
turing the low-level event stream on the phone, which includes both GUI events
and sensor events, and replaying it with microsecond accuracy. This approach
allows RERAN to capture and playback GUI events, i.e., touchscreen gestures
(e.g., tap, swipe, pinch, zoom), as well as those from other sensor input devices
(e.g., accelerometer, light sensor, compass).

We found other tools that offer attractive solutions for mobile application
testing, but we did not know if these were available via the Internet. In (S25)
QUANTUM is described. It is a framework for authoring test oracles for check-
ing user-interaction features of mobile applications, in an application agnostic
manner. The framework supports model-driven test suite generation where each
generated test includes both the test sequence to execute and the corresponding
assertions to check (as test oracles). The framework uses its built-in, extensi-
ble library of oracles (for various user-interaction features) and a model of the
user-interface for generating a test suite to comprehensively test the application
against user-interaction features. The framework supports the following user-
interaction features: double rotation, killing and restarting, pausing and resum-
ing, back button functionality, opening and closing menus, zooming in, zooming
out and scrolling. In (S07) Orbit is described. It uses a model based testing tech-
nique. It is based on a grey-box approach for automatically extracting a model
of the application being tested. A static analysis of the application source code
is used to extract the set of user actions supported by each widget in the GUL
Next, a dynamic crawler is used to reverse engineer a model of the application,
by systematically exercising extracted actions on the live application.

In several studies, proposed frameworks and platforms for mobile application
testing appear. However, very few of these proposals are available to be used.
Here we will mention some of these platforms or frameworks that provide con-
crete solutions for testing of mobile applications but we did not know if this
is available via the Internet. In (S82) Applnspector is described. It is an auto-
mated security validation system. In (S73) Testdroid is described. It is an online
platform for automating user interface testing.

Although there are many proposals for automated testing of mobile applica-
tions, few tools are available for download via the Internet or be using in the
cloud.

RQ3. What is the most used experimental method for evaluating
automated testing of mobile applications?

Automated Testing of Mobile Applications 13

Of the 40 studies included in the review, 23 studies reported empirical valida-
tion through a case study, in 8 studies reported a sample example and 9 studies
did not reported a clear description of the validation process. empirical used.

The presented case studies, there are very ambitious and well organized stud-
ies in the field. There are small examples that claim to be case studies. In many
cases, the information reported case study is insufficient to classify its stringency.

7 Conclusions

Mobile phones receive events of the Internet (such as email or social network
notifications), events from the external environment and sensed by sensors (such
as GPS, temperature, pressure), events generated by the platform of hardware
(such as battery and external peripheral port), events typical of mobile phones
(such as phone calls and text messages) and events produced through of the
GUI by users. The techniques discussed in this paper focus primarily on user
events and very few address the remaining events. Techniques for generating test
cases integrating as many events as possible still need to be developed. These
techniques should emulate the changing contexts in which mobile applications
operate.

In 40% of the studies, the technique used is based on the creation or use of
a model of the GUI application. This model is used to construct a suite of test
cases to test the application. There is still more research needed to create models
that are effective and efficient for automated testing of mobile applications.

Testing of mobile applications can leverage the strengths of cloud computing,
such as parallel and distributed systems, virtualization, and software services.
Cloud computing allows application instances to run independently on a vari-
ety of operating systems and connect them through web services. Research sites
could share real devices by reducing the cost of purchased equipment. The execu-
tion of parallel test cases can reduce the time required for testing. However, few
approaches are currently leveraging the benefits of cloud computing for testing.

There are many proposed tools for mobile application testing but many of
them are not available on the web for download. Others tools can be downloaded,
but in our opinion, they are complex to use and their user manuals are somewhat
deficient. Some tools are very specific and only serve to test a few features of the
applications.

Systematic literature review of evidence needs to be performed to determine
the experimental designs and the use of metrics to provide empirical evidence in
studies related to testing of mobile applications.

For future work we would like to set the search string to achieve include more
studies in the systematic literature review. In addition, we would like to make a
wider analyze on each of the techniques described in the studies. Also, we would
like to make a case study to evaluate and compare the tools that are available
according to the studies analyzed.

14

Automated Testing of Mobile Applications

Acknowledgments

This research was supported by the Costa Rican Ministry of Science, Technology and Telecommunications (MICITT).
Our thanks to the Empirical Software Engineering (ESE) Group at University of Costa Rica.

References

[1]

[2]

[3]
[4]

5]
[6]
[7]
8]
[9]

[10]
(1]
2]

[13]

[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

Amalfitano, D., Fasolino, A., Tramontana, P., De Carmine, S., Memon, A.: Using gui ripping for automated
testing of android applications. In: 2012 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012 - Proceedings. (2012) 258—-261 cited By (since 1996)20.

Muccini, H., Di Francesco, A., Esposito, P.: Software testing of mobile applications: Challenges and future
research directions. In: 2012 7th International Workshop on Automation of Software Test, AST 2012 - Proceed-
ings. (2012) 29-35 cited By (since 1996)1.

Wang, Z., Elbaum, S., Rosenblum, D.: Automated generation of context-aware tests. In: Software Engineering,
2007. ICSE 2007. 29th International Conference on. (2007) 406-415

Amalfitano, D., Fasolino, A., Tramontana, P., Amatucci, N.: Considering context events in event-based testing
of mobile applications. In: Proceedings - IEEE 6th International Conference on Software Testing, Verification
and Validation Workshops, ICSTW 2013. (2013) 126-133 cited By (since 1996)0.

Kirubakaran, B., Karthikeyani, V.: Mobile application testing-challenges and solution approach through au-
tomation. (2013) 79-84 cited By (since 1996)0.

Amalfitano, D., Fasolino, A., Tramontana, P., Robbins, B.: Testing android mobile applications: Challenges,
strategies, and approaches. Advances in Computers 89 (2013) 1-52 cited By (since 1996)1.

Wohlin, C., Runeson, P., Hést, M., Ohlsson, M.C., Regnell, B.: Experimentation in Software Engineering.
Springer (2012)

Kitchenham, B.: Procedures for performing systematic reviews. Technical report, Departament of Computer
Science, Keele University (2004)

Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engi-
neering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report (2007)
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf.

Petersen, K., Feldt, R., Shahid, M., Mattsson, M.: Systematic mapping studies in software engineering. In:
Proceedings of the Evaluation and Assessment in Software Engineering (EASE’08), Bari, Italy (June 2008) 1-10
Biolchini, J., Mian, P.G., Natali, A.C.C.: Systematic review in software engineering. Technical Report RT-ES
679/05, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil (May 2005)

Dyba, T., Dingsgyr, T., Hanssen, G.K.: Applying systematic reviews to diverse study types: An experience
report. In: ESEM, IEEE Computer Society (2007) 225-234

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from applying the systematic
literature review process within the software engineering domain. The Journal of Systems and Software 80(80)
(2007) 571-583

Pai, M., McCulloch, M., Gorman, J.D., Pai, N., Enanoria, W., Kennedy, G., Tharyan, P., Colford, J.M.: Sys-
tematic reviews and meta-analyses: an illustrated, step-by-step guide. Natl Med J India 17(2) (2004) 86-95
Petersen, K., Wohlin, C.: Context in industrial software engineering research. In: ESEM. (2009) 401-404
Zaeem, R., Prasad, M., Khurshid, S.: Automated generation of oracles for testing user-interaction features of
mobile apps. (2014) 183-192 cited By (since 1996)0.

Amalfitano, D., Fasolino, A., Tramontana, P., Ta, B., Memon, A.: Mobiguitar — a tool for automated model-
based testing of mobile apps. Software, IEEE PP(99) (2014) 1-1

Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing of android apps. ACM
SIGPLAN Notices 48(10) (2013) 641-660 cited By (since 1996)0.

Yang, W.b., Prasad, M., Xie, T.: A grey-box approach for automated gui-model generation of mobile appli-
cations. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 7798 LNCS (2013) 250-265 cited By (since 1996)3.

Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: Reran: Timing- and touch-sensitive record and replay for
android. In: Proceedings - International Conference on Software Engineering. (2013) 72-81 cited By (since
1996)1.

Mahmood, R., Esfahani, N., Kacem, T., Mirzaei, N., Malek, S., Stavrou, A.: A whitebox approach for automated
security testing of android applications on the cloud. In: 2012 7th International Workshop on Automation of
Software Test, AST 2012 - Proceedings. (2012) 22-28 cited By (since 1996)2.

Kaasila, J., Ferreira, D., Kostakos, V., Ojala, T.: Testdroid: Automated remote ui testing on android. In:
Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia, MUM 2012. (2012)
cited By (since 1996)0.

Gilbert, P., Chun, B.G., Cox, L., Jung, J.: Vision: Automated security validation of mobile apps at app markets.
In: MobiSys’11 - Compilation Proceedings of the 9th Int. Conf. on Mobile Systems, Applications, and Services
and Co-located Workshops - 2011 Workshop on Mobile Cloud Computing and Services, MCS’11. (2011) 21-25
cited By (since 1996)8.

Jiang, B., Long, X., Gao, X.: Mobiletest: A tool supporting automatic black box test for software on smart
mobile devices. (2007) cited By (since 1996)0.

Dixon-Woods, M., Agarwal, S., Jones, D., Young, B., Sutton, A.: Synthesising qualitative and quantitative
evidence: a review of possible methods. J Health Serv Res Policy 10(1) (Jan 2005) 45-53

Petersen, K.: Measuring and predicting software productivity: A systematic map and review. Information &
Software Technology 53(4) (2011) 317-343

Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in software engineering.
In: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering.
EASE 14, New York, NY, USA, ACM (2014) 38:1-38:10

Choi, W., Necula, G., Sen, K.: Guided gui testing of android apps with minimal restart and approximate
learning. ACM SIGPLAN Notices 48(10) (2013) 623—639 cited By (since 1996)0.

Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: An input generation system for android apps. (2013) 224-234
cited By (since 1996)5.

Nguyen, B., Robbins, B., Banerjee, I., Memon, A.: Guitar: an innovative tool for automated testing of gui-driven
software. Automated Software Engineering (2013) 1-41

Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of
context and context-awareness. In: Proceedings of the 1st international symposium on Handheld and Ubiquitous
Computing. HUC ’99, London, UK, UK, Springer-Verlag (1999) 304-307

