
 Lightweight software verification

with pluggable type-checking

Michael D. Ernst

University of Washington and Universidad de Buenos Aires
mernst@cs.washington.edu

Abstract. Software developers often rely on run-time exceptions to indicate

bugs in their code. It would be better to use verification to prove the absence of

bugs, but verification tends to be difficult to use. We propose a lightweight

software verification approach, called pluggable type-checking, that is easy to

use, extensible, and provides a compile-time guarantee that certain bugs are not

present in the code. Pluggable type-checking permits a software developer to

refine the built-in type system of a programming language to catch additional

errors, such as null pointer dereferences or race conditions. This approach has

been implemented for Java and is available in an open-source tool, the Checker

Framework (http://checkerframework.org/). Oracle Corporation is so excited

about this technology that Java 8 contains syntactic support for pluggable types.

This verification approach is relevant to multiple constituencies. Researchers

can build upon the framework to quickly create new program analysis tools.

Previously, evaluating a new type system required building a compiler. Now, is

it easier to experimentally evaluate a new type system, because the type-

checker implementation is only a few lines of code. Educators can introduce

software verification in a practical context, enabling students to learn by doing

and bringing theory to life. The Checker Framework has been successfully used

in the first or second programming class for computer science majors, and also

in more advanced classes. Practitioners can use pluggable type-checking to find

bugs or to prove the absence of bugs. Use of pluggable type-checking improves

code quality and design, and the types act as machine-checked documentation.

The Checker Framework is in daily use at corporations such as Google.

Attendees will leave the tutorial with a greater appreciation of the theory and

practice of pluggable type-checking. They will be prepared to use it for

research, teaching, or software development.

