Investigating Bioinspired Strategies to
Solve Large Scale Next Release Problem

Glauber Botelho, Arthur Rocha, André Britto, Leila Silva

Departamento de Computagio — Universidade Federal de Sergipe (UFS)
Sao Cristovao — SE — Brasil
{glauber.a.botelho, arthurstomp}@gmail.com, {andre, leila}@ufs.br

Abstract. Software requirements express the needs and constraints of
customers that are to be solved by software. The decision about which
requirements should be implemented in the next release of the software
should consider several issues such as dependencies among requirements,
project costs and budget, importance of the customers. Therefore, the
complexity of the prioritization and selection of requirements procedures
increases when the amount of requirements to be analyzed grows. In this
context, the automated prioritization and selection of requirements is a
relevant research problem, widely known as the Next Release Problem
(NRP). In this work, we have investigated two ways for solving the NRP
automatically, by using an Ant Colony Optimization (ACO) algorithm
and a Particle Swarm Optimization (PSO) algorithm. We have conducted
some experiments using classical instances of the NRP available in the
literature. The results show that the PSO algorithm is better than the
ACO algorithm in all situations analyzed.

1 Introduction

The complexity of software development has been continously in-
creasing and consequently software development processes are com-
monly performed in an incremental way. An important task of the
release planning of a software project is to select the best subset of
requirements to be implemented in the next release in such a way the
software company can achieve maximum commercial profit, without
overtaking the project budget. To guide this decision, the project
manager should consider several issues such as requirements inter-
dependency, project costs and budget, importance of the customers,
among others. As noticed by Zhang [15] a careful analysis, prioriti-
zation and selection of requirements is very important as mistakes in
an early stage of the development lifecycle can be extremely costly.

In general, a project may contain hundreds or even thousands
of requirements. Therefore, when several customers are considered,
it is a challenge task to decide which requirements lead to a better
user satisfaction. Thus, several methods to prioritize and select re-
quirements have been proposed, such as analytic hierarchy process,
simple ranking, cost-value, but according to Achimugu et al [1] these
methods have scalability problems.

The work presented by Bagnall et al [2] shows that the selection
of requirements can be regarded as the well-known knapsack prob-
lem [3] and so it is NP-hard. Furthermore, the large search space
that needs to be explored to find a suitable solution justifies the use
of a search based optimization algorithm. The authors coined this
problem as the Next Release Problem (NRP) in the search-based
software engineering literature. The NRP consists of selecting the
subset of requirements, to be delivered in the next release of the
software, that maximizes customer satisfaction without exceeding
the company budget. According to Zhang [15] this ensures that the
most important requirements are delivered first.

Several variants of the NRP have been proposed and the work of
Pitangueira et al [11] is a recent systematic review of this problem.
Nevertheless, the vast majoriy of the approaches considered in this
survey does not deal with the scalability issue of the NRP. Only the
work presented in [14] addresses the large scale NRP problem and
proposes a multi-stage algorithm, called BMA, for the problem.

In this work we investigate two bioinspired heuristics to solve
the large scale NRP: Ant Colony Optimization (ACO) and Particle
Swarm Optimization (PSO). The idea is to identify which heuris-
tic is more appropriate for dealing with the scalability issue of the
problem. Variants of the ACO have been used to solve the NRP (see
for example [12],[7],[10]). Nevertheless, these variants were applied
only to small instances of the problem. As far as we know we are the
first group to address the NRP with a PSO approach (see [9] for the
preliminary results we have achieved).

To validate our approach three classical group of instances of the
NRP provided by the OSCAR ! lab have been used. The experiments

! OSCAR (Optimizing Software by Computation from ARtificial intelligence):
http://www.orcar-lab.org/people/~jxuan/page/project/nrp/

have shown that the PSO algorithm achieves superior results com-
pared with the ACO algorithm and has, in general, similar results
of the BMA approach.

The remainder of this paper is organised as follows. In Section 2,
the NRP problem is formalised. The PSO and the ACO algorithms
are described in Section 3. In section 4, the experiments and results
achieved are discussed. Finally, in Section 5, we give some conclusions
and directions for future work.

2 The Next Release Problem

The goal of the NRP is to select a subset of the candidate require-
ments for the next release, in order to maximise some sort of profit,
for example, costumer satisfaction or development time, subjected
to a budget bound. Each customer can request a subset of candidate
requirements and may have an importance for the software company.
Each requirement has a cost and may depend on other requirements
to be implemented.

This problem can be mapped to the well known 0-1 knapsack
problem [3]. For the NRP, the weight limit of the knapsack is the
project budget. The customers are the items of the solution; the
importance of a customer is the value of the item. Each customer
is represented by his set of requirements. Therefore, as it is a 0-1
knapsack problem, the set of requirements of each customer should
be considered as a whole. Moreover, if any of these requirements is a
terminal node of a requirement chain, all requirements of the chain
must be included as part of the customer’s set. The weight of an
item (customer) is represented by the sum of the costs of all require-
ments associated to that customer. The goal of the problem is to
maximise the satisfaction of more important customers, by giving
priority in the implementation of their requirements, without violat-
ing the project budget. Thus, the solution of the NRP is a subset of
customers, meaning that all of their requested requirements are in
the next release of the software.

The NRP may be modelled as an acyclic digraph D, where ver-
tices are requirements and edges represent the dependency between
requirements. Let R be the set of all candidate requirements (ver-
tices), |R| = n, and E the set of edges in D. An edge (74, ;) means

that the requirement r; must be implemented before the implemen-
tation of the requirement 7;, 1 < 4,5 < n, ¢ # j. Thus if r; is
implemented in the next release, r; must also be implemented to
satisfy the dependency.

Assuming rs € R, s # t, a requirement chain in D, P(rg,r) is
a maximal directed path from r, to 7, expressing that the imple-
mentation of r; depends on the implementation of all requirements
in the chain. Let V P(r4, 1) be the set of vertices in P(rg,), includ-
ing the source vertex r, and the target vertex r;. As there may be
several chains ending in 7, say p chains, let L(r;) be the union of all
V P(rs,m), that is, L(r,) = Ui—; V Pj(rs, 7).

Each requirement (vertex), r; € R has an associated cost to be
implemented, ¢(r;). Nevertheless, to satisfy the dependency relation,
the implementation of a requirement implies the implementation of
all requirements in L(r;). Thus, the final cost to implement a re-
quirement 7; is ¢(L(r;)) = ¥, e () (7))

Let S be the set of customers, |S| = m. Considering the di-
graph D, each customer s,, 1 < u < m is represented by a subset
R, of R (R, € R), comprising the requirements the customer s,
wants to be implemented in the next release. Thus, the cost to sat-
isfy the customer s, is given by c(s,) = _,.cr, ¢(L(1;)). Moreover,
each customer s, has a value v(s,) associated, which is an integer,
representing the importance of s, to the company. For a subset of
customers S* C 5, v(S*) = X, s+ V(Su)-

A solution of the NRP is a subset S’ of S that maximises v(5’),
among all §" C S, restricted to Y-, cg ¢(s,) < B, where B is the
project budget.

To illustrate the problem, consider Figure 1, extracted from
[2], that presents a simple example, with set of requirements R =
{r1,79,73,74,75,76,77} and set of customers S = {s1,$2,53}. The
dependencies among requirements are

E ={(r1,r3), (r1,74), (r2,75), (r3,76), (r4,77), (15,77) }.

The requested requirements by customers are Ry = {rg}, Ry =
{re,m7}, R3 = {rs}. Thus, the final costs to satisfy the customers
are c(s1) = c(ry) + c(r3) + c(rg) = 23, c(s2) = X, e(r;) = 35 and
c(s3) = c(r2) + ¢(rs) = 10.The cost of the next release depends on
which customers are in the solution.

. Cost [c) Value
Reg. Customer vis,)
" 10
o 50
r, -
° % 60
r 7
, % 70
U l
s 4 ©)
|Cusk:mer 1| Icmmzl |Cusbnmer3|
F -
6 6
(@) ;
1

(b)

Fig. 1. Example of NRP (extracted from [2]).

Observe that the cost of all requirements is 35. By considering a
budget, B, equivalent to 0.7 of the total cost, B = 24.5, that are only
two acceptable solutions (we consider invalid an empty solution),
X7 = {s1} and X3 = {s3}. As X has a higher profit (importance of
costumer) than X, then it is the better solution for this example.

3 Bioinspired Algorithms Applied to the NRP

In what follows we describe the two bioinspired meta-heuristics here
considered to solve the NRP: Particle Swarm Optimization (Section
3.1) and Ant Colony Optimization (Section 3.2).

3.1 Particle Swarm Optimization Algorithm

The PSO is a population meta-heuristic based on the collective be-
haviour of flock of birds. PSO explores a n-dimensional search space
using set of solutions by updating generations. Each solution is a
particle and this set is called swarm. The swarm moves through the
search space in a cooperative search procedure. Each particle moves
following simple rules, performed by a velocity operator [8].

To model the NRP as a search problem using the PSO algorithm
some aspects must be considered to adapt the PSO to the NRP.
First, the fitness function used in the PSO algorithm for the NRP is
defined to maximise the profit of the solutions. Second, since PSO

was originally proposed to work with continuous solutions, to be ap-
plied to the NRP, the algorithm must be adapted to binary solutions.
Based on the work of [8], for the NRP we represent a solution S’ as
a n-dimensional array of binary values, where the position s, is 1 if
the u-th costumer is considered, otherwise is 0.

The velocity operator is applied to every particle in the swarm
and it is guided by a local and social component. The local com-
ponent, called local best (LBest), represents the best position ever
achieved by the particle. The social component, called global best
(GBest), represents the best position ever achieved among neigh-
bourhood particles. This neighbourhood can be a small set of parti-
cles or even the entire swarm [6].

Instead of being the amount of movement for each dimension, the
velocity is the bias of the particle to be 0 or 1. For each position @ (t),
if the velocity of the particle is high, it is more likely to select the
value 1. If the velocity of the particle is low, then, it is more likely
to select 0. To perform this decision, the velocity of a particle p;,
defined by Equation 1, is based on the best position already fetched
by the particle, LBest, and the best position already fetched by the
set of neighbors of p;, (GBest). Here, the neighbourhood was defined
by the entire swarm, so the GG Best is the best position ever achieved
by a particle in the swarm.

T (t+1) = T (t)+ ((p1- (LBest — T (t)) + (o - (GBest — 7 (t))) (1)

The variables ¢, and @5 in Equation 1 are coefficients that deter-
mine the influence of the particle’s best position. The sum of these
variables must not be greater the ¢. These parameters must be de-
fined by the user.

The velocity of the particle must vary between 0 and 1. To achieve
this, it is used the sigmoid function [13] to limit the values of the
velocity. The sigmoid function, for the ¢-th particle on the j-th di-
mension is defined by Equation 2

1
t);) = 2
S(U()]) 1 +€‘Xp(—?)(t)j) ()
Each particle must decide, whether the j-th dimension will be

0 or 1. As the decisions of every particle have to be stochastic, we
use a random probabilistic threshold p, that is a array of random

values between 0 and 1. So, the decision about what will be the
next position of the i-th particle on the j-th dimension is defined by
Equation 3.

ifp; < s(v(t);) then z(t +1); =1else x(t+1); =0 (3)

Using these movement equations the basic steps of PSO algo-
rithm is described as follows. The algorithm starts by initialising
the particles with random start position (solution of NRP) and ran-
dom start velocity. Then, the algorithm enters into an evolutionary
loop. This loop stops when the stop criteria, defined by the user,
occurs. In our algorithm, the stop criteria was a pre-defined number
of iterations. Inside of the loop, each particle is considered. For each
particle, the L Best position and G Best position must be updated if
the current position (particle.x(t)) is better then the current LBest
and GGBest positions. Then the algorithm updates the velocity and
the position of the particle. The new velocity (particle.v;(t + 1))
is updated following Equation 1. Then, velocity is bounded using
the sigmoid function, the probabilistic decision is applied and the
particle will decide whether each costumer will be considered or not.

3.2 Ant Colony Optimization Algorithm

The ACO heuristics is inspired on real ant colonies, which use
pheromone to communicate and collaborate, and is suitable to solve
NP-hard problems.

The standard ACO approach was proposed by Dorigo and Gam-
bardella [5] and applied to solve the Travelling Salesman Problem
(TSP) [3]. In this approach, the artificial ants walks through a com-
plete graph composed of n vertices. Each vertex represents a city. In
the beginning of the algorithm, each ant is positioned in a city, chosen
randomly. After that, each ant will move through the graph guided
by a transition rule that considers the value of the pheromone (a
real number) of each incident edge in its current position (vertex).
Edges with higher values of pheromone have higher priority when
establishing the next movement. During the movement, the amount
of pheromone of the chosen edge is increased, according to a local
pheromone updating rule. When all the ants have finished building
their solutions, the amount of pheromone deposited is changed again,

this time using a global pheromone updating rule. The goal of the
global pheromone updating is to increase the amount of pheromone
of the edges belonging to the best solutions found. During the con-
struction of the solutions, the ants are guided by a heuristic infor-
mation and the pheromone. An edge with a high pheromone value is
a good choice. Thus, the pheromone updating rules are designed so
that the edges that must be visited by ants receive more pheromone.
The algorithms stop when reaches the established number of itera-
tions.

We can map the NRP to the TSP and use ACO to find a suitable
solution for the NRP. In the NRP, each vertex represents a customer.
An artificial ant walks in the graph deciding whether include or not
a customer in its solution. This choice is made using a probability
function, defined by Equation 4, which expresses the probability of
the ant, being in vertex r, to move to vertex s. In the NRP this means
to include customer s in the current set of the ant in position r.

[7(r,9)].[n(r,5)]? if s € Ji(r
pk<7a7 S) = ZuEJk('I”) [T(Tvu)Hﬁ(Tv“)]B ’ k() <4)
0, otherwise

In Equation 4, 7 is the pheromone of the edge (r,s), n is the
heuristic information, in the NRP the ratio of the importance of a
given customer by the cost to implement all the requirements re-
quested by this customer. Ji(r) is the set of customers not already
visited by ant k& positioned on the customer r and f is a parameter
that determines the relative importance of the pheromone consid-
ering the heuristic information (5 > 0). When the ant visits the
edge chosen by applying Equation 4, it deposits a pheromone, which
value is given by Equation 5. In Equation 5, 0 < # < 1 is the local
pheromone evaporation rate.

T(r,s) < (1 —60).7(r,s) + 0.A7(r, s) (5)

When the ants have finished to build their solutions, the global
pheromone updating rule is applied, according to Equation 6

7(r,s) « (1 — «).7(r,s) + a.A7(r, s) (6)

where

(Lgp) ™1, if (1, s) € best solution found
0, otherwise.

arrs) = { @

0 < a < 1 is the global pheromone evaporation rate and Lg, is the
size of the best solution found since the beginning of the algorithm
execution. Notice that, in Equation 6, the pheromone is updated
only in the edges that are part of the best route found so far.

4 Results and Discussion

In this section we investigate the performance of both bioinspired
algorithms for three large scale NRP group of instances. Initially,
it is presented the enviroment where we have executed our experi-
ments: the details about the classical NRP group of instances used in
the experiments and the algorithms’ parameters. Then, Section 4.2
presents the results achieved by using the PSO and the ACO heuris-
tics. Finally, we discuss these results, comparing them with the re-
sults shown in [14] for the BMA algorithm, which is the state-of-the-
art algorithm for large instances of NRP.

4.1 Environment

The algorithms have been evaluated by using three groups of large
instances of NRP, called nrp-1, nrp-2 and nrp-3 groups, introduced
in [2] and shown in Table 1.

Table 1. Details about the Classic NRP groups of instances.

Group name nrp-1 nrp-2 nrp-3
Requirements per level 20/40/80 20/40/80/160/320 250,/500/700
Cost of requirements 1~5/2~8/5~10 1~5/2~7/3~9/4~10/5~15 1~5/2~8/5~10
Max child requirements 8/2/0 8/6/4/2/0 8/2/0
Request of customers 1~5 1~5 1~5
Customers 100 500 500
Profit of customers 10~50 10~50 10~50

Considering Table 1, each group has at least three levels of re-
quirements (I > 3). A requirement on level [may depend on require-
ments of level (I — 1). The levels of requirements are separeted by
the symbol / and the lowest level is the highest value. For example,

the group nrp-1 has 80, 40 and 20 requirements in its first, second
and third levels, respectively. The ranges of the costs of each re-
quirement are specified in the second row, organized by levels. Each
requirement may depend on other requirements and the maximum
number of dependencies for each requirement, according its level, is
expressed in the third row. Each group of instances has a predefined
number of customers (fifth row), which may request the implemen-
tation of a set of requirements (fourth row). For example, the nrp-1
group has 100 customers and each customer may require between 1
to 5 requirements. The importance of each customer for the com-
pany is expressed in the last row. Thus, for the nrp-1 group this
value ranges from 10 to 50. Each group includes three instances, not
shown in Table 1, which consider distinct budget bounds, represent-
ing 30%, 50% and 70% of the total amount of requirements’ costs.
An instance name is formed by the group name and the cost ratio.
For example, nrp-1-0.3 is an instance in the group nrp-1 that has
the cost ratio 0.3.

Each algorithm has specific parameters defined experimentally.
For the PSO algorithm, the number of particles that will be inter-
acting, p, was defined as 200 for all NRP instances. The number of
times that all the particles will move towards the global best, n, was
defined as 200 for nrp-1 and 1000 for nrp-2 and nrp-3. So, the algo-
rithms executed 40, 000 objective function evaluations for nrp-1, and
200, 000 for nrp-2 and nrp-3. Also, the maximum and minimum ve-
locities of the particles, were defined as V,,,, = 4.0 and V,,;;,, = —4.0
for nrp-1 and V.. = 7.0 and V,,;, = —7.0 for nrp-2 and nrp-3.
Finally, ¢, the upper bound of the sum of random factors ¢; and s,
was defined as a constant ¢ = 4.

The ACO algorithm was executed the same number of objec-
tive function evaluations as the PSO algorithm. For all groups of
instances the number of ants used, n, was set to 25. The number
of iterations per execution, t was set to 1,600 for nrp-1 and 8,000
for nrp-2 and nrp-3. The evaporation rate of pheromone used in
the local and the global pheromone updating rules are the same,
a = 6 = 0.0245.The relative importance of pheromone considering
the heuristic information was set to g = 2.5.

The results of PSO and ACO algorithms have been obtained from
20 independent runs. The comparison between the two algorithms

was followed the methodology presented in [4]. We have used the
Wilcoxon statistical test, with 95% of confidence level. Wilcoxon
test is a non-parametric statistical test used to verify whether two
data sets are statistically different or not.

Futhermore, we have used the results of the BMA algorithm pre-
sented in [14], wich is a multi-stage algorithm specially designed to
deal with large NRP instances. However, it was not possible to ob-
tain the raw data of the BMA algorithm for the instances used in
this paper. Therefore, it was not possible to perform a statistical
comparison between the BMA approach and the algorithms used in
this work. Hence, the results of the BMA algorithm are used just as
basis to indicate if the PSO and ACO algorithms could obtain good
results in large instances of the NRP in comparison with a more
complex approach.

4.2 Results

Table 2 presents the results obtained by the ACO and PSO algo-
rithms, as well as the ones for the BMA approach extracted from
[14]. Every line in Table 2 shows the name of the instance and the
average satisfaction values for each algorithm, that is, the sum of
the requirements costs of the final solution. Thus, higher values of
satisfaction implies in a better performance of the algorithm. The
values in parenthesis indicates the standard deviation. Also, for each
instance it is presented the p-value obtained by Wilcoxon test. A

p-value lower than 0.05 indicates there is a statistical difference be-
tween the ACO and PSO algorithms.

Table 2. Average Satisfaction Values of the PSO, ACO and BMA algorithms.

fstance | 5 o PSO p-value || BMA
Name
nrp-1-0.3| 1119.25 (3.16) | 1154.35 (25.38) | 0.015 || 1188.3
nrp-1-0.5(1756.00 (16.42)| 1784.05 (29.75) | 0.003 || 1796.2
nrp-1-0.7|2489.65 (12.77)| 2497.8 (21.65) | 0.001 || 2507.0
nrp-2-0.3|4248.30 (55.41)|1369.05 (163,83)| 3.2E-04 || 4605.6
nrp-2-0.5(6543.70 (79.59) | 7404.5 (151.94) |6.70E-05|| 7414.1
)
)
)

nrp-2-0.7|9575.8 (109.66)|10815.95 (74.38)(6.70E-05|{10924.7
nrp-3-0.8(6902.30 (52.75)| 7239.45 (62.97) |6.70E-05|| 7086.3
nrp-3-0.5(10340.7 (50.38)|10949.52 (49.51)|6.70E-05|{10787.2
nrp-3-0.7| 13957 (33.95) |14142.55 (49.51)|6.70E-05||14159.2

The first relevant difference between the ACO and PSO algo-
rithms is in the parameter settings. The ACO algorithm obtained
its best results with a small number of individuals and higher num-
ber of iterations, while the PSO best results were obtained with
a higher number of individuals. This difference in the parameters
configuration, show us, that, although both algorithms are bioin-
spired meta-heuristics, they have different learning procedures and
can achieve different results in the NRP instances.

Now, observing Table 2, in overall PSO achieved better results
than ACO. Let consider now each instance group in particular. For
the the nrp-1 and nrp-2 groups of instances, PSO obtained a higher
value of satisfaction for all different budgets. Furthermore, the p-
values for the three instances of these groups, were lower than 0.05,
which indicates that the PSO algorithm obtained statistical better
results than the ACO algorithm. When comparing both the ACO
and the PSO algorithms to the BMA, the BMA has better satisfac-
tion values, however observing the mean satisfaction values of both
the PSO algorithm and the BMA, these values are very close. The
PSO algorithm reaches about 99% of the BMA’s satisfaction values.
Notice that the nrp-2 group has 500 clients and these results show
that the PSO algorithm is better than the ACO algorithm for both
small and large instances of the NRP.

Finally, considering the set of experiments for the nrp-3 group,
the PSO algorithm outperforms the ACO algorithm and, in the ma-
jority of instances, the BMA algorithm. The group nrp-3 has the
same number of clients than the nrp-2 group, however it has a more
complex dependence tree which introduces more complexity in the
search. The main difference of this set of experiments, was that the
PSO algorithm obtained better results than BMA algorithm and
these results indicate that PSO can also achieve good results for
complex instances of the NRP.

In summary, considering the results of those three sets of exper-
iments, PSO outperformed ACO. Despite ACO is a meta-heuristic
specially designed for discrete problems, the complex nature of the
NRP instances made PSO more apt to this problems. This result is
consistent with literature reports, which indicates that PSO is a very
good heuristic for complex problems [8]. In our experiments, ACO
algorithm converged faster, which leads to a lower exploitation of

the search space and, consequently, better solutions are not found.
Finally, we can highlight that PSO achieves the best results for the
biggest and complex instance, being suitable for high dimensional
next release problems. The good results of PSO when compared to
BMA, corroborates that PSO is suitable for the NRP and can be

applied in larger instances.

5 Conclusion

In this paper we have investigated two algorithms based on the ACO
and the PSO heuristics to large scale NRP. The motivation was to
compare the behaviour of both algorithms when considering a large
amount of requirements to select, a reality in the software industry.

Although there are some works applying ACO algorithms to the
NRP, none of them has addressed the scalability issue of the problem.
Moreover, as far as we know, we are the first group to investigate
PSO algorithms in this context. For doing this, as PSO was originally
proposed for the continuum, we had to adapt the PSO algorithm to
deal with a discrete problem as explained in Section 3.

We have conducted some experiments to compare the algorithms
by using classic synthetic instances of the NRP, proposed in [2]. In
all instances evaluated the PSO algorithm overcomes the ACO algo-
rithm. We have also compared our results with the BMA algorithm,
a multi-stage algorithm that also deals with large scale NRP. The
PSO and the BMA algorithms have very similar results, and in some
large instances, the PSO algorithm has a better performance.

Nevertheless, our experiments consider only a subset of synthetic
instances introduced in [2]; to deal with all instances proposed in
[2] and with real data as in [14] is our immediate future task. In
addition, there are interesting points that require further research.
To introduce more variables to the problem, such as risks and uncer-
tainty of requirements, will be a challenge task as the search space
will increase in complexity, but may better represent the problem
faced by the software industry. The adaptation of the PSO algo-
rithm to a discrete problem here proposed is very simple; therefore,
a more complex mapping should be investigated. The investigation
of other variants of the ACO and PSO heuristics, as well as multi-
objective ACO and PSO approaches is also a future task. Finally,

our ultimate goal is to develop a tool that could give support to the
task of release planning.

References

1.

10.

11.

12.

13.

14.

15.

Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.N.: A systematic literature
review of software requirements prioritization research. Information and Software
Technology 56(6), 568-585 (2014)

Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem.
Information and Software Technology 43(14), 883-890 (2001)

Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
Third Edtion. The MIT Press, 3rd edn. (2009)

Derrac, J., Garca, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1), 3 — 18
2011

](Dorigl, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. Trans. Evol. Comp 1(1), 53-66 (1997),
http://dx.doi.org/10.1109/4235.585892

Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. Pro-
ceedings of the Sixth International Symposium on Micromachine and Human Sci-
ence pp. 39-43 (1995)

Jiang, H., Zhang, J., Xuan, J., Re, Z., Hu, Y.: A hybrid aco algorithm for the next
release problem. In: Proceedings of the 2nd International Conference on Software
Engineering and Data Mining (SEDM ’10). pp. 166-171. IEEE, Chengdu, China
2010

i(ennidy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann Pub-
lishers (2001)

Menezes, A., Carvalho, A., Silva, L.: Applying the particle swarm optimisation to
solving the next release problem. In: Proceedings of the 5th Brazilian Workshop
on Search-Based Software Engineering (WESB ’14). Maceio, AL, Brazil (2014)
do Nascimento Ferreira, T., de Souza, J.T.: An aco approach for the next release
problem with dependency among requirements. In: Proceedings of the 3rd Brazilian
Workshop on Search-Based Software Engineering (WESB ’12). Natal, RN, Brazil
2012

éitan)gueira, A.M., Maciel, R.S.P., de Oliveira Barros, M., Andrade, A.M.S.: A
systematic review of software requirements selection and prioritization using sbse
approaches. In: Ruhe, G., Zhang, Y. (eds.) SSBSE. Lecture Notes in Computer
Science, vol. 8084, pp. 188-208. Springer (2013)

del Sagrado, J., del guila, I.M., Orellana, F.J.: Ant colony optimization for the
next release problem. 2st International Symposium on Search Based Software En-
gineering pp. 67 — 76 (2010)

von Seggern, D.H.: CRC Standard Curves and Surfaces with Mathematica. Chap-
man and Hall/CRC (2006)

Xuan, J., Jiang, H., Ren, Z., Luo, Z.: Solving the large scale next release prob-
lem with a backbone based multilevel algorithm. IEEE Transactions on Software
Engineering 38(5), 1195-1212 (2012)

Zhang, Y.: Multi-Objective Search-based Requirements Selection and Optimisa-
tion. Phd thesis, King’s College London, UK (2010)

