
Restricted metamodel-based similarity propagation:

a comparative study

Gabriel Peschl and Marcos Didonet Del Fabro

FAES Lab. Federal University of Parana, Coronel Francisco H. dos Santos Street, Curitiba,

Brazil

{gpeschl, marcos.ddf}@inf.ufpr.br

Abstract. In Model Driven Engineering (MDE), there are different approaches

to establish links between elements of different models. The links are used for

distinct purposes, such as serving as specification for model transformations.

Once the links are established, it is common to set up a similarity value to indi-

cate equivalence (or not) between the elements. The Similarity Flooding (SF) is

one of the most know algorithms that may increase the similarity of elements

that are structurally similar. The algorithm is generic, and it has proven to be ef-

ficient. However, it depends on a graph-based and generic encoding. In this pa-

per, we present a comparative study of a couple of metamodel-based encodings.

The goal was to verify if a less-generic implementation, involving a lesser

number of model elements, based on the metamodel structures, could be a via-

ble implementation and adaptation of the SF algorithm. We developed tests

with two metamodels for managing bugs and their corresponding models: Man-

tis and Bugzilla.

Keywords. Matching model, constraint technique for propagation graph, Mod-

el-Driven Software Engineering, Similarity Flooding.

1 Introduction

In Model Driven Engineering (MDE), there are different approaches to establish links

between elements of different models. The links are used for distinct purposes, such

as, specification of model transformations, model traceability or data integration. The

operation that establishes these links is called matching. The output of the matching

comprises sets of mappings, or alignments, indicating how the elements relate to each

other [4]. The alignments often have a value from 1 to 0, to indicate how close the

linked elements are.

The Similarity Flooding algorithm [9] is a well-known algorithm that takes a set of

initial similarity values and propagates them through structurally close elements [9].

The similarities 'flows' according to a propagation structure, that may vary depending

on the encoding adopted. The use of adapted propagation algorithms may improve the

similarities between the models elements [1][3][9].

mailto:marcos.ddf%7d@inf.ufpr.br

Few authors implement the generic implementations for the Similarity Flooding

that encode the model as a generic graph structure, such as the implementation in [9].

Most authors propose distinct ways to encode a (meta) model to perform the propaga-

tion similarities, as showed in [3].

In this article, we present a study of a set of propagation techniques, based on

common specific structures of metamodels (e.g., attributes of references). We encode

the propagation structures separately, aiming to verify if we can achieve good results

using restricted implementation of the propagation graphs. We present a comparison

of how much these similarities have been increased (or decrease) in comparison with

an implementation comprising all the propagation structures, more similar (though not

equivalent) to the original SF implementation. Our contribution is to verify if the

development of constrained propagation techniques is advised, which could be tai-

lored and applied in several MDE operations. We tested our studies with two partial

metamodels: Mantis and Bugzilla.

This paper is organized as follows. Section 2 shows the context of this paper:

MDE, matching and the Similarity Flooding algorithm. Section 2 also presents the

propagations techniques, results and discussion, where we compare our propagation

techniques with a generic method. Section 3 presents the related works. Section 4

presents the conclusions as well as the future work.

2 Context

In the MDE, models are first-class entities [1][4]. In this paper, a model represents a

software, with notations and characteristics of interest [4]. A formal definition de-

scribes a model as a directed labeled multigraph [6]. Below, we provide the formal-

ism regarding directed labeled multigraph and model (the definitions are based on

[6]):

─ A directed labeled multigraph G = (NG EG, ΓG) consists of sets of nodes NG, sets

of edges EG and a mapping function ΓG : EG, NG X NG .

─ A model M is a triple (G, ω, μ), where G relates to a directed labeled multigraph;

ω is itself a model called the reference model of M and, ω associates with a multi-

graph Gω = (N, Eω, Γω) . The expression (μ : NG U EG Nω) associates nodes and

edges of G to nodes of Gω .

An approach for MDE is based on metamodeling, which defines grammar and vo-

cabulary to express models [6]. MDE approaches are often presented as a 3-level

architecture: the 3rd level is called metametamodel; the 2nd describes the metamodel

and the 1st has the terminal model [7]. Informally, a metamodel defines the valid

model elements that may be instantiated. On its turn, a metametamodel defines the

valid elements of a metamodel [7]. The terminal model represents a model itself [6].

The relation between these levels is called conformance [6] [4].

As already stated, we aim at producing better links between the (meta) models,

through a process called matching. According to [9][1], matching is the process of

establishing semantic correlations between model elements belonging to different

models. The output of matching is a set of links (alignments). Links may be created

manually, but this process could be tedious in a large set of elements, or error prone.

The solution is to use semi-automatic matching algorithms to automate these process-

es [9]. Link have similarities values in a range from 1 to 0 [4], which means in com-

mon or not in common. These similarities values could be calculated using an algo-

rithm of Edit Distance, string equality, similarity, and others [4].

While the similarity values could be constant, we may improve them using the

Similarity Flooding algorithm [9], which has been used in different scenarios and it

has be proven to be efficient. The similarities may be used as an input to the Similari-

ty Flooding algorithm, which are “propagated” along the links of the (meta) models.

We explain a generic propagation of the Similarity Flooding [9] in the following.

Consider two input models Ma and Mb and their instances {a, a'} ∊Ma and {b, b'}

∊ Mb. Elements {a, a'} as well as {b, b'} are connected by a labeled-edge. The pairs

{a, a'} and {b, b'} has similarities equaling x and y, respectively. The main idea of

Similarity Flooding algorithm is to propagate the similarities between links in an iter-

ative sum, which are connected by the same labelled-edge. The algorithm propagate x

to (b, b') and update y [1]. The propagation coefficient, given as π, indicates how

much the link similarity flows along the links of the (meta) models [9].

2.1 Methodology

Fig. 1. Methodology proposed

In this section, we present how the similarities and the propagation are calculated.

First, we load 2 models and theirs respective metamodels (Figure 1). After that, the

execution of a matching algorithm creates the links between the model elements. We

use a well know string metric, called Levenshtein Edit Distance [8], to set up the simi-

larities of the links. These are the initial input values for the Similarity Flooding algo-

rithm.

We divided our experiments into 2 groups, according to a filter, which selects only

links with a similarity higher than a given value. This enables diminishing the number

of processed links.

 Group I: a filter is applied after running the Similarity Flooding algorithm;

 Group II: a filter is applied before running the Similarity Flooding algorithm.

The Similarity Flooding algorithm runs according to sets of propagation techniques

constrained. We compared them with a generic solution at the end. The overall pro-

cess is the following:

1. To perform the matching to create the links;

2. To calculate the similarities of these links using the Levenshtein Edit Distance

[8];

3. To execute the Similarity Flooding Algorithm;

4. To run the filters:

 4.1. After executing the Similarity Flooding algorithm and,

 4.2. Before executing the Similarity Flooding algorithm;

5. To compare and discuss the results.

2.2 Existing methods

We encoded restrictive propagation graphs according to structural information of

elements of a given (meta) model: class, attributes and references. We present the

techniques in the following1:

─ From links between Classes to links between Attributes: it propagates the simi-

larity from link between classes to link between attribute belonging to the same

matched class [1] (Figure 2). The propagation coefficient is calculated as: π = 1/Lx,

where Lx indicates the number of links between attributes regarding Class A and

Class B matched, with Lx ≠ 0.

1 Figures 2, 3, 4, 5 and 6 describe the propagation techniques. While they are quite similar,

they illustrate the direction of the propagation between links. We use a partial representation

of models of the Mantis (model A) and Bugzilla (model B) to explain the propagation tech-

niques.

Fig. 2. Propagation technique: from links between classes to links between attributes

─ From links between Classes to links between References: it propagates the simi-

larities from links between classes to links between references belonging to the

same matched class [1] (Figure 3). This is very similar to the previous propagation

technique. The propagation coefficient is calculated as: π = 1/Ly, where Ly is the

number of links between references of Class A and Class B matched, with Ly ≠ 0.

Fig. 3. Propagation technique: from link between classes to link between references

─ From links between Classes to link between Attributes and References: it

propagates the similarities from links between classes to links between attributes

and references belonging to the matched class (Figure 4). The formula of the prop-

agation coefficient is: π = 1/Lxy, where Lxy is the amount of the links between at-

tributes and references of Class A and Class B matched, with Lxy ≠ 0.

Fig. 4. Propagation technique: from links between classes to link between attributes and refer-

ences

─ From links between Classes to link between References and Attributes: it

propagates the similarities from link between classes to links between references

matched with attributes of the same class (Figure 5). It changes the propagation di-

rection, if compared with the previous method. The propagation coefficient is π =

1/Lyx, where Lyx is the amount of links between references and attributes regarding

Class A and Class B matched, with Lyx ≠ 0.

Fig. 5. Propagation technique: from link between classes to link between references and attrib-

utes

─ From links between Attributes to links between model instances: the similari-

ties between links of attributes are propagated to links of its respective instances

[9] (Figure 6). The propagation coefficient is π = 1/Lι, where Lι designates the

amount of instances of a given attributes regarding Class A and Class B matched,

with Lι ≠ 0.

Fig. 6. Propagation technique: from links between attributes to links between model instances

2.3 Evaluation

We utilized the Eclipse Modeling Framework, EMF - a standard for MDE, to handle

models and metamodel and encode the propagation techniques. We validate our pro-

posal through two partial (meta) models: Mantis and Bugzilla2, which are semantical-

ly similar, used to store information related to bug tracking projects [4].

The Mantis’ metamodel has 9 classes, 15 attributes and 10 references. The Bugzil-

la’s metamodel has 9 classes, 39 attributes and 8 references. The matching between

these metamodels generated:

 Links between classes: 9 * 9 = 81;

 Links between attributes: 15 * 39 = 585;

 Links between references: 10 * 8 = 80.

While an instance is explicitly related to a class, we make a distinction between the

model elements representing a class (called a class instance) and the model elements

representing the values of the attributes (called an attribute instance). The Mantis´

model has 5 classes instances, 12 attribute with 1 attribute for each instance. The

Bugzilla´s model has 4 classes instances and 31 attribute instances with 1 attribute per

instance. The matching generated:

 Links between instances of classes: 5 * 4 = 20;

 Links between instances of attributes: 12 * 31 = 372;

 Links between instances: 12 * 31 = 372 (one attribute to each instance).

Table 1 shows the results according to each kind of propagation used. An approach

combining the different methods is shown on Table 2. Both tables display the results

of the (I) first filter and (II) second filter configurations; π indicates the propagation

coefficient; the link with (*) represents the links between classes or links between

attributes. The settings of iterations for the Similarity Flooding are 1, 3 and 6.

The value of the π differ for number of the links according to the filter configura-

tion. For example, the link of the class “IdentifiedElt x LongDesc” has 4 links in the

first filter configuration, then, π = 1/Lx = ¼ = 0.25. In other hand, the same link, in the

second filter configuration, has 1 link to execute the propagation, then, π = 1/Lx = 1/1

= 1. This logic follows for all other links of model elements. Note that the propaga-

tions are restricted to a given type of elements, so they cannot be used in all propaga-

tion techniques.

2 The metamodels of Mantis and Bugzilla are available on http://www.emn.fr/z-

info/atlanmod/index.php/Ecore

Table 1. Partial results of constrained-based propagation techniques

Links Sim. π 1st 3rd 6th

 I II I II I II I II

Propagation: from links between Classes to links between Attributes

*IdentifiedElt

x LongDesc
0.091 0.25 1 0.047 0.195 0.047 0.195 0.047 0.195

id x who 0.25 0.25 1 0.018 0.195 0.013 0.195 0.012 0.195

* Issue x Bug 0.2 0.0075 1 1 0.686 1 0.686 1 0.686

 version x

version
1 0.0075 1 0.068 0.686 0.022 0.686 0.009 0.686

* Attachment

x Attachment
1 0.0312 0.333 0.347 1 0.347 1 0.347 1

size x id 0.25 0.0312 0.333 0.019 0.333 0.019 0.333 0.019 0.333

Propagation: from links between Classes to links between References

* Issue x Bug 0.2 0.014 1 1 1 1 1 1 1

attachments x

attachment
0.5 0.014 1 0.064 1 0.028 1 0.015 1

Propagation: from links between Classes to links between References and Attributes

* Issue x Bug 0.2 0.004 0.25 1 1 1 1 1 1

priority x

priority
1 0.004 0.25 0.038 0.162 0.013 0.228 0.005 0.247

* Issue x

BugzillaRoot
0.083 0.025 1 0.183 0.176 0.183 0.176 0.183 0.176

reporter x

exporter
0.333 0.025 1 0.012 0.176 0.006 0.176 0.004 0.176

Propagation: from links between Classes to links between Attributes and References

*IdentifiedElt

x Bug
0.07 0.1428 1 0.243 1 0.243 1 0.243 1

id x cc 0.333 0.1428 1 0.079 1 0.046 1 0.036 1

Propagation: from links between attributes to links between model instances

* version x

version
1 1 - 1 - 1 - 1 -

Beta x beta 1 1 - 1 - 1 - 1 -

* category x

exporter
0.111 1 - 0.185 - 0.185 - 0.185

website x

teste
0.25 1 - 0.185 - 0.185 - 0.185 -

* value x

component
0.111 1 - 0.180 - 0.180 - 0.180 -

low x link 0.25 1 - 0.180 - 0.180 - 0.180

Table 2. Partial results of the combined technique

Links Sim. π 1st 3rd 6th

 I II I II I II I II

*IdentifiedElt

x LongDesc
0.091 0.25 1 0.013 0.070 0.013 0.070 0.014 0.070

id x who 0.25 0.25 1 0.005 0.070 0.003 0.070 0.003 0.070

* Issue x Bug 0.2 0.002 0.142 1 1 1 1 1 1

 version x

version
1 0.002 0.142 0.019 0.211 0.006 0.159 0.002 0.149

attachments x

attachment
0.5 0.002 0.142 0.009 0.108 0.003 0.134 0.002 0.141

project x

product
0.333 0.002 0.142 0.006 0.07 0.003 0.125 0.002 0.140

* Issue x

BugzillaRoot
0.083 0.117 0.5 0.193 0.291 0.193 0.291 0.193 0.291

reporter x

exporter
0.333 0.117 0.5 0.006 0.074 0.003 0.125 0.002 0.140

*IdentifiedElt

x Bug
0.07 0.344 1 0.066 0.083 0.067 0.083 0.070 0.083

id x cc 0.333 0.334 1 0.006 0.083 0.003 0.083 0.002 0.083

* Attachment

x Attachment
1 0.0312 0.333 0.097 0.125 0.091 0.125 0.081 0.125

size x id 0.25 0.0312 0.333 0.005 0.062 0.003 0.062 0.002 0.062

2.4 Discussion

We implemented separated propagation structures based on the metamodel elements

to propagate similarities between links of model or metamodel elements. The tech-

niques are rather simple to implement, but executing them separately enables to have

some conclusions about the similarity process. We encoded five propagations and we

executed them with two different filters. Table 3 give us an overview about the results

of each propagation, compared with a combined approach. It shows the percent of

gain over iteration of the Flooding algorithm and, the results according to (I) filter

configuration and (II) filter configuration.

With respect to the links between the metamodels elements. The similarity propa-

gation may be executed several times, until a given delta is no longer achieved. The

Similarity Flooding algorithm tends to propagate the similarity to a class or element

that has the biggest number of links. For these reason, after each iteration and normal-

ization of the results, the similarity increased basically in a single kind of link.

Concerning the propagation between attribute links and instance links, we ob-

served that the similarities are unable to “flow” between links, where the propagation

coefficient is equal 1. For example, from the link “version x version” to the link “Be-

ta x beta”, the same similarity of the link of the attribute is equal to the similarity of

the link of the instance, in any iteration. We can apply this logic where the propaga-

tion coefficient is equal 1 (Table 1).

The second filter configuration acted as a constraint, reducing the number of the

links. Therefore, we did not find a significant increase relative to the average of the

similarity in comparison with the combined technique.

As a limitation of this study, our implementation does not deal with links concern-

ing inheritance propagation. However, it is possible to infer that abstract classes with

a generic structure (e.g. an “Object” class), would have several links and the similari-

ty would highly increase.

The way link were filtered is also a limitation. Del Fabro and Valduriez [1] show

that such an implementation can be a disadvantage, since the limit value for the filter

is known. In this work, we set the filter threshold according to the links between at-

tributes or links between instances, with values equal to 0.5 for the links between

attributes, and 0.25 for the links between instances. After empiric analysis, these val-

ues returned the links with a best match.

Table 3. Comparative results

 1st 3rd 6th

Constraints I

(%)

II

 (%)

I

(%)

II

(%)

I

(%)

II

(%)

From links between
Classes to links be-

tween attributes

84.9 172.6 83.6 161.9 86.3 164.4

From links between
Classes to links be-
tween references

754.2 515.7 779.5 515.6 803.8 515.6

From links between
Classes to links be-
tween references and

attributes

169.5 81.1 175.1 81.1 182 81.1

From links between
Classes to links be-
tween attributes and
references

134.5 515.7 128.3 515.6 130 515.6

From links between
attributes to links be-

tween model instances

427.2 - 462 - 483.7 -

3 Related works

Most of the existing approaches developing the SF algorithm and propagations, as

well as its variants have similar goals: to produce alignments to integrate data or, to

try to produce better alignment by exploiting elements in several formalism: xml files,

ontology or metamodel [1][2][4][5][9].

Melnik [9] developed the Similarity Flooding algorithm to align data schemas and,

nowadays, this structure may useful in many scenarios: metamodels alignments, on-

tology alignments and model alignments. In schema matching, we also have the Co-

ma++ [2], that employ the Uppropagation. As opposed the Similarity Flooding algo-

rithm, the Uppropagation propagates the mean of the highest similarity values from

the instances to attributes [2].

Falleri et al [3] use the Similarity Flooding to find alignments in two metamodels

in an automated way. The main contribution is the study on the various scenarios for

encoding the metamodels into a directed labeled graph that can be exploited by the

Similarity Flooding Algorithm [3]. In this work, we propose 5 restricted propagation

techniques, based on metamodel structures. Heraguemi et al [5] propose the use of the

Similarity Flooding algorithm to align software architecture metamodels [5]. Del

Fabro et al [1] proposed a generic way to produce metamodels alignments using the

Similarity Flooding algorithm in a chain metamodel transformation. The similarities

are propagates on links between the metamodels elements and, these results are saved

in a metamodel. Zhang, Yuan and Huan [12] developed a version of the SF for the

MapReduce to be applied in a large-scale graph datasets. Here, each iterative sum of

SF is a job of the MapReduce. According to results, the customized SF achieved its

objective [12]. Truong et al [11] implemented a new version for SF in the context of

integration of the ontologies. The method of the concept classification is applied to

increase the precision and reduce the process of the SF. According to Truong et al

[11], this method avoid the SF to compare exhaustively among all nodes of the ontol-

ogy.

According to our knowledge, these are between the most representative approaches

in its field of study. While they all have similarities, it is difficult to compare them,

because the scenarios, the model encodings and the propagation techniques have dif-

ferences on the conceptual design and implementation. This work gather some simple

techniques and provide a comparison.

4 Conclusion

In this paper, we developed different propagation techniques based on metamodel

structures, in order to execute a variant of the Similarity Flooding Algorithm [9]. The

techniques may be handled by different existing approaches, though they are not exe-

cuted separately in order to perform comparisons.

We implement propagations between five different kinds of elements, from meta-

models or models. The main goal is to calculate the propagation coefficient between

the existing links. The coefficient is calculated based on the structural information of

a given (meta) model: class, attribute and reference. We presented a case study where

we performed the algorithm in two models: Mantis and Bugzilla.

The restricted propagation executions had a high increase on the similarity values.

Therefore, these techniques show viable, because they reduce the number of model

elements. We argue that the greater the amount of incoming propagation graphs in a

single link, the higher its result. We can confirm as an example the link “Issue x Bug”

(Table 1).

However, the metamodel and model instances are quite simple and they had con-

centrating classes. The combined technique would probably be more appropriate for

highly and evenly connected model elements.

We also implement two filters on the Similarity Flooding algorithm results: (a) af-

ter executing the Similarity Flooding and, (b) before executing the Similarity Flood-

ing. Both implementations enable to diminish the number of links that are involved in

the propagation process. However, the choice of the filter value remains empiric. We

can clearly see that knowing the models and metamodels in advance may have an

influence on the choice of the propagation technique, especially to avoid the highly

centralized elements. However, this should be tested and developed with bigger mod-

els and with different nature as well.

Future work should address the development and testing of the propagation tech-

niques with larger models, and, testing the techniques with models of different na-

tures.

5 References

1. Del Fabro, M. D., Valduriez, P.: Towards the efficient development of model transfor-

mations using model weaving and matching transformations. Software & Systems Model-

ing, 8(3):305–324 (2009).

2. Engmann, D., Massmann, S.: Instance matching with coma++ (2007).

3. Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for automatic

model transformation generation. In Model Driven Engineering Languages and Systems,

pages 326–340. Springer (2008).

4. Garces. K. Adaptation and evaluation of generic model matching strategies. PhD thesis,

Université de Nantes (2010).

5. Heraguemi, K. E., Abid, A., Amirat, A.: Software architecture matching based on similari-

ty flooding algorithm. Proc. 2nd International Symposium on Modelling and Implementa-

tion of Complex Systems (2012).

6. Jouault, F., Bézivin, J.: KM3: A DSL for metamodel specification. In Gorrieri, R. and

Wehrheim, H., editors, Formal Methods for Open Object-Based. Distributed Systems, vol-

ume 4037 of Lecture Notes in Computer Science, pages 171–185. Springer Berlin Heidel-

berg (2006).

7. Kleiner, M., Didonet Del Fabro, M., Queiroz Santos, D.: Transformation as search. In

Gorp, P., Ritter, T., and Rose, L., editors, Modelling Foundations and Applications, vol-

ume 7949 of Lecture Notes in Computer Science, pages 54–69. Springer Berlin Heidelberg

(2013).

8. Levenshtein, I. V.: Binary codes capable of correcting deletions, insertions and reversals.

In Soviet physics doklady, volume 10, pages 707 (1966).

9. Melnik, S.: Generic model management: concepts and algorithms, volume 2967. Springer

(2004).

10. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic Notes in Theo-

retical Computer Science, 152:125–142 (2006).

11. Truong, H. B., Nguyen, Q., U., Nguyen, N., T., Duong, T. H.: A new graph-based flooding

matching method for ontology integration. Proc. 2013 IEEE International Conference on

Cybernetics, pages 86-91 (2013).

12. Zhang, J., Chunfeng Y., Yihua H.: Parallelized Similarity Flooding Algorithm for Pro-

cessing Large Scale Graph Datasets with MapReduce. Proc.13th IEEE International Con-

ference on Parallel and Distributed Computing, Applications and Technologies, pages 184-

188 (2012).

