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Abstract. In Model Driven Engineering (MDE), there are different approaches 

to establish links between elements of different models. The links are used for 

distinct purposes, such as serving as specification for model transformations. 

Once the links are established, it is common to set up a similarity value to indi-

cate equivalence (or not) between the elements. The Similarity Flooding (SF) is 

one of the most know algorithms that may increase the similarity of elements 

that are structurally similar. The algorithm is generic, and it has proven to be ef-

ficient. However, it depends on a graph-based and generic encoding. In this pa-

per, we present a comparative study of a couple of metamodel-based encodings. 

The goal was to verify if a less-generic implementation, involving a lesser 

number of model elements, based on the metamodel structures, could be a via-

ble implementation and adaptation of the SF algorithm. We developed tests 

with two metamodels for managing bugs and their corresponding models: Man-

tis and Bugzilla. 

Keywords. Matching model, constraint technique for propagation graph, Mod-

el-Driven Software Engineering, Similarity Flooding. 

1 Introduction 

In Model Driven Engineering (MDE), there are different approaches to establish links 

between elements of different models. The links are used for distinct purposes, such 

as, specification of model transformations, model traceability or data integration. The 

operation that establishes these links is called matching. The output of the matching 

comprises sets of mappings, or alignments, indicating how the elements relate to each 

other [4]. The alignments often have a value from 1 to 0, to indicate how close the 

linked elements are. 

The Similarity Flooding algorithm [9] is a well-known algorithm that takes a set of 

initial similarity values and propagates them through structurally close elements [9]. 

The similarities 'flows' according to a propagation structure, that may vary depending 

on the encoding adopted. The use of adapted propagation algorithms may improve the 

similarities between the models elements [1][3][9]. 
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Few authors implement the generic implementations for the Similarity Flooding 

that encode the model as a generic graph structure, such as the implementation in [9]. 

Most authors propose distinct ways to encode a (meta) model to perform the propaga-

tion similarities, as showed in [3]. 

In this article, we present a study of a set of propagation techniques, based on 

common specific structures of metamodels (e.g., attributes of references). We encode 

the propagation structures separately, aiming to verify if we can achieve good results 

using restricted implementation of the propagation graphs. We present a comparison 

of how much these similarities have been increased (or decrease) in comparison with 

an implementation comprising all the propagation structures, more similar (though not 

equivalent) to the original SF implementation. Our contribution is to verify if the 

development of constrained propagation techniques is advised, which could be tai-

lored and applied in several MDE operations. We tested our studies with two partial 

metamodels: Mantis and Bugzilla.  

This paper is organized as follows. Section 2 shows the context of this paper: 

MDE, matching and the Similarity Flooding algorithm. Section 2 also presents the 

propagations techniques, results and discussion, where we compare our propagation 

techniques with a generic method. Section 3 presents the related works. Section 4 

presents the conclusions as well as the future work. 

2 Context 

In the MDE, models are first-class entities [1][4]. In this paper, a model represents a 

software, with notations and characteristics of interest [4]. A formal definition de-

scribes a model as a directed labeled multigraph [6].  Below, we provide the formal-

ism regarding directed labeled multigraph and model (the definitions are based on 

[6]):  

─ A directed labeled multigraph G = (NG EG, ΓG) consists of sets of nodes NG, sets 

of edges EG and a mapping function ΓG  :  EG,  NG X NG . 

─  A model M is a triple (G, ω, μ), where G relates to a directed labeled multigraph; 

ω is itself a model called the reference model of M and, ω associates with a multi-

graph Gω = (N, Eω, Γω) . The expression (μ : NG U EG  Nω) associates nodes and 

edges of G to nodes of Gω . 

An approach for MDE is based on metamodeling, which defines grammar and vo-

cabulary to express models [6]. MDE approaches are often presented as a 3-level 

architecture: the 3rd level is called metametamodel; the 2nd describes the metamodel 

and the 1st has the terminal model [7]. Informally, a metamodel defines the valid 

model elements that may be instantiated. On its turn, a metametamodel defines the 

valid elements of a metamodel [7]. The terminal model represents a model itself [6]. 

The relation between these levels is called conformance [6] [4]. 

As already stated, we aim at producing better links between the (meta) models, 

through a process called matching. According to [9][1], matching is the process of 

establishing semantic correlations between model elements belonging to different 



models. The output of matching is a set of links (alignments). Links may be created 

manually, but this process could be tedious in a large set of elements, or error prone. 

The solution is to use semi-automatic matching algorithms to automate these process-

es [9]. Link have similarities values in a range from 1 to 0 [4], which means in com-

mon or not in common. These similarities values could be calculated using an algo-

rithm of Edit Distance, string equality, similarity, and others [4]. 

While the similarity values could be constant, we may improve them using the 

Similarity Flooding algorithm [9], which has been used in different scenarios and it 

has be proven to be efficient. The similarities may be used as an input to the Similari-

ty Flooding algorithm, which are “propagated” along the links of the (meta) models. 

We explain a generic propagation of the Similarity Flooding [9] in the following. 

Consider two input models Ma and Mb and their instances {a, a'} ∊Ma and {b, b'} 

∊ Mb. Elements {a, a'} as well as {b, b'} are connected by a labeled-edge. The pairs 

{a, a'} and {b, b'} has similarities equaling x and y, respectively. The main idea of 

Similarity Flooding algorithm is to propagate the similarities between links in an iter-

ative sum, which are connected by the same labelled-edge. The algorithm propagate x 

to (b, b') and update y [1]. The propagation coefficient, given as π, indicates how 

much the link similarity flows along the links of the (meta) models [9].  

2.1 Methodology 

 

 

Fig. 1.  Methodology proposed 

In this section, we present how the similarities and the propagation are calculated. 

First, we load 2 models and theirs respective metamodels (Figure 1). After that, the 

execution of a matching algorithm creates the links between the model elements. We 



use a well know string metric, called Levenshtein Edit Distance [8], to set up the simi-

larities of the links. These are the initial input values for the Similarity Flooding algo-

rithm.  

We divided our experiments into 2 groups, according to a filter, which selects only 

links with a similarity higher than a given value. This enables diminishing the number 

of processed links. 

 Group I: a filter is applied after running the Similarity Flooding algorithm; 

  Group II: a filter is applied before running the Similarity Flooding algorithm.  

The Similarity Flooding algorithm runs according to sets of propagation techniques 

constrained. We compared them with a generic solution at the end. The overall pro-

cess is the following:  

1. To perform the matching to create the links;  

2. To calculate the similarities of these links using the Levenshtein Edit Distance 

[8];  

3. To execute the Similarity Flooding Algorithm;  

4. To run the filters: 

 4.1. After executing the Similarity Flooding algorithm and,  

 4.2. Before executing the Similarity Flooding algorithm;  

5. To compare and discuss the results.  

2.2 Existing methods 

We encoded restrictive propagation graphs according to structural information of 

elements of a given (meta) model: class, attributes and references. We present the 

techniques in the following1:  

 

─ From links between Classes to links between Attributes: it propagates the simi-

larity from link between classes to link between attribute belonging to the same 

matched class [1] (Figure 2). The propagation coefficient is calculated as: π = 1/Lx, 

where Lx indicates the number of links between attributes regarding Class A and 

Class B matched, with Lx ≠ 0.  

                                                        
1   Figures 2, 3, 4, 5 and 6 describe the propagation techniques. While they are quite similar, 

they illustrate the direction of the propagation between links. We use a partial representation 

of models of the Mantis (model A) and Bugzilla (model B) to explain the propagation tech-

niques.  



 
Fig. 2. Propagation technique: from links between classes to links between attributes 

 

─ From links between Classes to links between References: it propagates the simi-

larities from links between classes to links between references belonging to the 

same matched class [1] (Figure 3). This is very similar to the previous propagation 

technique. The propagation coefficient is calculated as: π = 1/Ly, where Ly is the 

number of links between references of Class A and Class B matched, with Ly  ≠ 0. 

 

Fig. 3. Propagation technique: from link between classes to link between references  



─ From links between Classes to link between Attributes and References: it 

propagates the similarities from links between classes to links between attributes 

and references belonging to the matched class (Figure 4). The formula of the prop-

agation coefficient is: π = 1/Lxy, where Lxy  is the amount of the links between at-

tributes and references of Class A and Class B matched, with Lxy ≠ 0. 

 

Fig. 4. Propagation technique: from links between classes to link between attributes and refer-

ences 

─ From links between Classes to link between References and Attributes: it 

propagates the similarities from link between classes to links between references 

matched with attributes of the same class (Figure 5). It changes the propagation di-

rection, if compared with the previous method. The propagation coefficient is π = 

1/Lyx, where Lyx is the amount of links between references and attributes regarding 

Class A and Class B matched, with Lyx  ≠ 0. 



 

Fig. 5.  Propagation technique: from link between classes to link between references and attrib-

utes 

─ From links between Attributes to links between model instances: the similari-

ties between links of attributes are propagated to links of its respective instances 

[9] (Figure 6). The propagation coefficient is π = 1/Lι, where Lι designates the 

amount of instances of a given attributes regarding Class A and Class B matched, 

with Lι  ≠ 0. 

 

Fig. 6. Propagation technique: from links between attributes to links between model instances 



2.3 Evaluation 

We utilized the Eclipse Modeling Framework, EMF - a standard for MDE, to handle 

models and metamodel and encode the propagation techniques. We validate our pro-

posal through two partial (meta) models: Mantis and Bugzilla2, which are semantical-

ly similar, used to store information related to bug tracking projects [4].  

The Mantis’ metamodel has 9 classes, 15 attributes and 10 references. The Bugzil-

la’s metamodel has 9 classes, 39 attributes and 8 references. The matching between 

these metamodels generated: 

 Links between classes: 9 * 9 = 81; 

 Links between attributes: 15 * 39 = 585; 

 Links between references: 10 * 8 = 80. 

While an instance is explicitly related to a class, we make a distinction between the 

model elements representing a class (called a class instance) and the model elements 

representing the values of the attributes (called an attribute instance). The Mantis´ 

model has 5 classes instances, 12 attribute with 1 attribute for each instance. The 

Bugzilla´s model has 4 classes instances and 31 attribute instances with 1 attribute per 

instance. The matching generated: 

 Links between instances of classes: 5 * 4 = 20; 

 Links between instances of attributes: 12 * 31 = 372; 

 Links between instances: 12 * 31 = 372 (one attribute to each instance). 

Table 1 shows the results according to each kind of propagation used. An approach 

combining the different methods is shown on Table 2. Both tables display the results 

of the (I) first filter and (II) second filter configurations; π indicates the propagation 

coefficient; the link with (*) represents the links between classes or links between 

attributes. The settings of iterations for the Similarity Flooding are 1, 3 and 6.  

The value of the π differ for number of the links according to the filter configura-

tion. For example, the link of the class “IdentifiedElt x LongDesc” has 4 links in the 

first filter configuration, then, π = 1/Lx = ¼ = 0.25. In other hand, the same link, in the 

second filter configuration, has 1 link to execute the propagation, then, π = 1/Lx = 1/1 

= 1. This logic follows for all other links of model elements. Note that the propaga-

tions are restricted to a given type of elements, so they cannot be used in all propaga-

tion techniques. 

                                                        
2  The metamodels of Mantis and Bugzilla are available on http://www.emn.fr/z-

info/atlanmod/index.php/Ecore 



Table 1. Partial results of constrained-based propagation techniques 

Links Sim. π 1st 3rd 6th 

  I II I II I II I II 

Propagation: from links between Classes to links between Attributes 

*IdentifiedElt 

x LongDesc 
0.091 0.25 1 0.047 0.195 0.047 0.195 0.047 0.195 

id x who  0.25 0.25 1 0.018 0.195 0.013 0.195 0.012 0.195 

* Issue x Bug 0.2 0.0075 1 1 0.686 1 0.686 1 0.686 

 version x 

version 
1 0.0075 1 0.068 0.686 0.022 0.686 0.009 0.686 

* Attachment 

x Attachment 
1 0.0312 0.333 0.347 1 0.347 1 0.347 1 

size x id 0.25 0.0312 0.333 0.019 0.333 0.019 0.333 0.019 0.333 

Propagation: from links between Classes to links between References 

* Issue x Bug 0.2 0.014 1 1 1 1 1 1 1 

attachments x 

attachment 
0.5 0.014 1 0.064 1 0.028 1 0.015 1 

Propagation: from links between Classes to links between References and Attributes 

* Issue x Bug 0.2 0.004 0.25 1 1 1 1 1 1 

priority x 

priority 
1 0.004 0.25 0.038 0.162 0.013 0.228 0.005 0.247 

* Issue x 

BugzillaRoot 
0.083 0.025 1 0.183 0.176 0.183 0.176 0.183 0.176 

reporter x 

exporter 
0.333 0.025 1 0.012 0.176 0.006 0.176 0.004 0.176 

Propagation: from links between Classes to links between Attributes and References 

*IdentifiedElt 

x Bug 
0.07 0.1428 1 0.243 1 0.243 1 0.243 1 

id x cc 0.333 0.1428 1 0.079 1 0.046 1 0.036 1 

Propagation: from links between attributes to links between model instances 

* version x 

version 
1 1 - 1 - 1 - 1 - 

Beta x beta 1 1 - 1 - 1 - 1 - 

* category x 

exporter 
0.111 1 - 0.185 - 0.185 - 0.185  

website x 

teste 
0.25 1 - 0.185 - 0.185 - 0.185 - 

* value x 

component 
0.111 1 - 0.180 - 0.180 - 0.180 - 

low x link 0.25 1 - 0.180 - 0.180 - 0.180  

 

 



Table 2.  Partial results of the combined technique  

Links Sim. π 1st 3rd 6th 

  I II I II I II I II 

*IdentifiedElt 

x LongDesc 
0.091 0.25 1 0.013 0.070 0.013 0.070 0.014 0.070 

id x who  0.25 0.25 1 0.005 0.070 0.003 0.070 0.003 0.070 

* Issue x Bug 0.2 0.002 0.142 1 1 1 1 1 1 

 version x 

version 
1 0.002 0.142 0.019 0.211 0.006 0.159 0.002 0.149 

attachments x 

attachment 
0.5 0.002 0.142 0.009 0.108 0.003 0.134 0.002 0.141 

project x 

product 
0.333 0.002 0.142 0.006 0.07 0.003 0.125 0.002 0.140 

* Issue x 

BugzillaRoot 
0.083 0.117 0.5 0.193 0.291 0.193 0.291 0.193 0.291 

reporter x 

exporter 
0.333 0.117 0.5 0.006 0.074 0.003 0.125 0.002 0.140 

*IdentifiedElt 

x Bug 
0.07 0.344 1 0.066 0.083 0.067 0.083 0.070 0.083 

id x cc 0.333 0.334 1 0.006 0.083 0.003 0.083 0.002 0.083 

* Attachment 

x Attachment 
1 0.0312 0.333 0.097 0.125 0.091 0.125 0.081 0.125 

size x id 0.25 0.0312 0.333 0.005 0.062 0.003 0.062 0.002 0.062 

2.4 Discussion 

We implemented separated propagation structures based on the metamodel elements 

to propagate similarities between links of model or metamodel elements. The tech-

niques are rather simple to implement, but executing them separately enables to have 

some conclusions about the similarity process. We encoded five propagations and we 

executed them with two different filters. Table 3 give us an overview about the results 

of each propagation, compared with a combined approach. It shows the percent of 

gain over iteration of the Flooding algorithm and, the results according to (I) filter 

configuration and (II) filter configuration. 

With respect to the links between the metamodels elements. The similarity propa-

gation may be executed several times, until a given delta is no longer achieved. The 

Similarity Flooding algorithm tends to propagate the similarity to a class or element 

that has the biggest number of links. For these reason, after each iteration and normal-

ization of the results, the similarity increased basically in a single kind of link. 

Concerning the propagation between attribute links and instance links, we ob-

served that the similarities are unable to “flow” between links, where the propagation 

coefficient is equal 1. For example, from the link “version x version” to the link “Be-

ta x beta”, the same similarity of the link of the attribute is equal to the similarity of 



the link of the instance, in any iteration. We can apply this logic where the propaga-

tion coefficient is equal 1 (Table 1). 

The second filter configuration acted as a constraint, reducing the number of the 

links. Therefore, we did not find a significant increase relative to the average of the 

similarity in comparison with the combined technique.  

As a limitation of this study, our implementation does not deal with links concern-

ing inheritance propagation. However, it is possible to infer that abstract classes with 

a generic structure (e.g. an “Object” class), would have several links and the similari-

ty would highly increase. 

The way link were filtered is also a limitation. Del Fabro and Valduriez [1] show 

that such an implementation can be a disadvantage, since the limit value for the filter 

is known. In this work, we set the filter threshold according to the links between at-

tributes or links between instances, with values equal to 0.5 for the links between 

attributes, and 0.25 for the links between instances. After empiric analysis, these val-

ues returned the links with a best match.  

 

Table 3. Comparative results 

 
  1st 3rd 6th 

Constraints I  

(%) 

II 

 (%) 

I  

(%) 

II  

(%) 

I  

(%) 

II  

(%) 

From links between 
Classes to links be-

tween attributes 

84.9 172.6 83.6 161.9 86.3 164.4 

From links between 
Classes to links be-
tween references 

754.2 515.7 779.5 515.6 803.8 515.6 

From links between 
Classes to links be-
tween references and 

attributes 

169.5 81.1 175.1 81.1 182 81.1 

From links between 
Classes to links be-
tween attributes and 
references 

134.5 515.7 128.3 515.6 130 515.6 

From links between 
attributes to links be-

tween model instances 

427.2 - 462 - 483.7 - 

3 Related works 

Most of the existing approaches developing the SF algorithm and propagations, as 

well as its variants have similar goals: to produce alignments to integrate data or, to 

try to produce better alignment by exploiting elements in several formalism: xml files, 

ontology or metamodel [1][2][4][5][9]. 



Melnik [9] developed the Similarity Flooding algorithm to align data schemas and, 

nowadays, this structure may useful in many scenarios: metamodels alignments, on-

tology alignments and model alignments. In schema matching, we also have the Co-

ma++ [2], that employ the Uppropagation. As opposed the Similarity Flooding algo-

rithm, the Uppropagation propagates the mean of the highest similarity values from 

the instances to attributes [2]. 

Falleri et al [3] use the Similarity Flooding to find alignments in two metamodels 

in an automated way. The main contribution is the study on the various scenarios for 

encoding the metamodels into a directed labeled graph that can be exploited by the 

Similarity Flooding Algorithm [3]. In this work, we propose 5 restricted propagation 

techniques, based on metamodel structures. Heraguemi et al [5] propose the use of the 

Similarity Flooding algorithm to align software architecture metamodels [5]. Del 

Fabro et al [1] proposed a generic way to produce metamodels alignments using the 

Similarity Flooding algorithm in a chain metamodel transformation. The similarities 

are propagates on links between the metamodels elements and, these results are saved 

in a metamodel. Zhang, Yuan and Huan [12] developed a version of the SF for the 

MapReduce to be applied in a large-scale graph datasets. Here, each iterative sum of 

SF is a job of the MapReduce. According to results, the customized SF achieved its 

objective [12]. Truong et al [11] implemented a new version for SF in the context of 

integration of the ontologies. The method of the concept classification is applied to 

increase the precision and reduce the process of the SF. According to Truong et al 

[11], this method avoid the SF to compare exhaustively among all nodes of the ontol-

ogy. 

According to our knowledge, these are between the most representative approaches 

in its field of study. While they all have similarities, it is difficult to compare them, 

because the scenarios, the model encodings and the propagation techniques have dif-

ferences on the conceptual design and implementation. This work gather some simple 

techniques and provide a comparison. 

4 Conclusion 

In this paper, we developed different propagation techniques based on metamodel 

structures, in order to execute a variant of the Similarity Flooding Algorithm [9]. The 

techniques may be handled by different existing approaches, though they are not exe-

cuted separately in order to perform comparisons.  

We implement propagations between five different kinds of elements, from meta-

models or models. The main goal is to calculate the propagation coefficient between 

the existing links. The coefficient is calculated based on the structural information of 

a given (meta) model: class, attribute and reference. We presented a case study where 

we performed the algorithm in two models: Mantis and Bugzilla. 

The restricted propagation executions had a high increase on the similarity values. 

Therefore, these techniques show viable, because they reduce the number of model 

elements. We argue that the greater the amount of incoming propagation graphs in a 



single link, the higher its result. We can confirm as an example the link “Issue x Bug” 

(Table 1). 

However, the metamodel and model instances are quite simple and they had con-

centrating classes. The combined technique would probably be more appropriate for 

highly and evenly connected model elements. 

We also implement two filters on the Similarity Flooding algorithm results: (a) af-

ter executing the Similarity Flooding and, (b) before executing the Similarity Flood-

ing. Both implementations enable to diminish the number of links that are involved in 

the propagation process. However, the choice of the filter value remains empiric. We 

can clearly see that knowing the models and metamodels in advance may have an 

influence on the choice of the propagation technique, especially to avoid the highly 

centralized elements. However, this should be tested and developed with bigger mod-

els and with different nature as well. 

Future work should address the development and testing of the propagation tech-

niques with larger models, and, testing the techniques with models of different na-

tures. 
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