
Automatic generation of GUI test cases using
Ant Colony Optimization and Greedy algorithm.

Jose Rodriguez1 and Glen D. Rodriguez23

1 Universidad Nacional Mayor de San Marcos, Lima, Peru,
ingpibe@gmail.com,

WWW home page: http://www.unmsm.edu.pe
2 Universidad Nacional de Ingenieria, Lima, Peru,

grodriguez@uni.edu.pe,
WWW home page: http://www.uni.edu.pe
3 Universidad Ricardo Palma, Lima, Peru,

glen.rodriguez@gmail.com,
WWW home page: http://www.urp.edu.pe

Abstract. The increasing complexity of new applications means GUIs
are also getting more complex, and generating tests cases manually for
them becomes harder. Generating automatic, good quality GUI test cases
is a growing concern in application testing. Actions performed by the
user on the GUI can be regarded as events, which can be performed in
sequences, forming a graph of event sequences, and therefore multiple
execution paths or routes, known as test cases, are possible. The quality
of a set of test cases is measured by the coverage criteria (all actions or
events must be performed at least one time in the set), which depend on
the length and partial coverage of each execution path. Finding feasible
paths and complying with the coverage criteria is a highly combinatorial
problem. For such problems, due to high computing power that it would
take to find an exact solution, it is well justified to use heuristics and
metaheuristics algorithms, allowing us to find approximate solutions of
good quality. Those methods have been successfully used in chemistry,
physics, biology, and recently, in software engineering. In this paper, the
use of a metaheuristic known as Ant Colony Optimization Algorithm
(ACO) for generating test cases is proposed. The ACO metaheuristic
has been adapted in order to find individual routes that could lead to
a set of test cases of good quality. A individual test, path or route is
desirable if it is long (it tests a lot of events or actions) and do not
share events (or share few events) with other paths. After a appropiate
number of candidate test cases are generated, we express the problem
of generating a set of test cases as a set covering problem and then we
apply a greedy algorithm to solve it. The result is a set of paths (test
cases) with full covering of events with small number of test cases. We
present also a problem solved by our method, generating test cases for
Windows Wordpad, and discuss the results.

Keywords: GUI testing, automated test case generation, Ant Colony Optimiza-
tion (ACO), event-flow model, set covering problems, greedy algorithm, shortest
path

1 Introduction

Software application are growing in complexity year after year. Graphical User
Interface (GUI) grows both regarding the number of objects subject to user
interaction (buttons, menu options, mouse-triggered events, etc.) and regard-
ing dependencies between GUI objects status. Traditionally this true only for
desktop-based applications, but the coming-of-age of AJAX technologies means
that this is also true for many web based applications.

GUI testing is an important task in software engineering [20]. A study says
that in average GUI development takes up to 48% of source code and 50% of
time in the implementation phase [16]. A bad implemented GUI can also impact
software reliability; this has been studied in smartphone applications [12]. For a
complex GUI, manual generation of test cases and their maintenance, evaluation,
and conformance to coverage criteria are very time consuming [13]. According
some studies an average of 6% of all bugs found in a system are due to GUI errors
[4]. Generating automatic, good quality GUI test cases is a growing concern in
application testing, and it s popularity is increasing [9]. If you add the fact that
most teams have very strict time and money constraints, and in practice the
quality of testing is an afterthought.

To help testers, in the last 15 years there has been efforts in order to automate
the generation and execution of GUI test cases; those efforts are oriented towards
proposing models for GUI interactions, generating test cases based in one of
those models and search algorithms, and developing tools for the task. This
papers deals basically with the automatic generation problem. No new model is
proposed, but a new approach to search and a tool are presented.

This paper is organized as follows. In section 2, a revision of recent research
is shown. In section 3, the modeling of the GUI as a graph, and of each test
case as a sequence of events mapped into the graph is explained. In section 4, an
algorithm based in Ant Colony Optimization (ACO) and a Greedy algorithm is
presented. In section 5, a test problem is presented, and the results are shown
and discussed.

2 Revision of related research

According to [14], a GUI can be defined as a hierarchical, graphical front-end
to a software system that accepts as input user-generated and system-generated
events from a fixed set of events and produces deterministic graphical output.
A GUI contains graphical objects; each object has a fixed set of properties. At
any time during the execution of the GUI, these properties have discrete values,
the set of which constitutes the state of the GUI.

There are two high level models for GUI testing. The oldest is the finite state
machine model, proposed first by Hu for any kind of software [5]. Later, it was
adapted to user interfase testing, for example on the variable finite state ma-
chine (VFSM) model [18], which uses the Wp algorithm proposed by Fujiwara
et al [10] to generate test cases. The disadvantages of these model and the al-
gorithms associated are: it does not discard the NULL transitions (transitions
which are back to the originating state) leading to potentially repeated identical
tests differing only by a NULL [18]; and it is not scalable [20].

A recent research uses generated test cases and log files from running those
test, and then does GUI bug mining in order to find new errors (results with
behaviour similar to known errors). It can be considered an new empirical based
approach to finite state machine model [11]

The second model is based in graphs and called event-flow model [13][14].
The model is presented in detail on section 3 of this paper. After modeling the
desired GUI (as it is supossed to be) as a graph, a artificial intelligence technique
called Planning. To avoid defining too much operators that could slow down AI
planning, events are classified into menu-open events, unrestricted-focus events,
restricted-focus events and system-interaction events; later planning operators
are reduced to system-interaction operators or abstract operators, according to
which events they are related to. The tester choose an initial state and a goal
state, and the AI planner suggest one or more sequences of events leading from
the initial to the goal state [13].

The final version of the event-flow model starts with encoding each event
in term of preconditions and effects, and then created the direct graph for the
GUI [14]. Because GUIs are hierarchical, the graph is not fully connected (most
graphs are sparse), and this hierarchy may be exploited to identify groups of
GUI events that may be modelled in isolation (for example: modal windows).
Test case generation was done using a graph-traversal algorithm.

A more recent research have been done by Bauersfeld et al [2][3], that uses
Memon’s event-flow model and generates one optimal sequence of events by Ant
Colony Optimization (ACO). Here, the goal of ACO is to find a sequence of
events that maximize the amount of method calls in the source code associated
with the navigation across the GUI corresponding to the sequence of events. The
implicit goal is testing as many methods as possible with one sequence of events.

Actual techniques used in practice to testing GUIs are incomplete and not
fully automatic. Regarding tools, there are some like HP WinRunner and its
successors with some degree of automatization, particulary in test case record-
ing and execution. Hp WinRunner generates a GUI map automatically or by
monitoring user’s interaction with the software, it checks for good GUI design
practices (example: mnemonics for all buttons or menu options, labels not too
large) but the tester needs to create a TSL (Test Scriptling Language) script
to define and run the test cases[15]. Ultimately WinRunner is more oriented
to supporting functional and regression testing; good coverage criteria is left as
testers’ reponsibility at the time they create the TSL scripts.

Other tool is jfcUnit, an extension to the popular testing framework JUnit
for testing Java Swing applications. It can obtain handles on Windows/Dialogs
opened by the Java code, locate components within a component hierarchy, raise
events on the found components (e.g. clicking a button, typing text in a textField
component) and check if the result of these events are as expected or not. The
testers, too, have to design the test by hand, and it is their responsability to
meet the coverage criteria.

Abbot also was created for testing Java Swing applications. It is oriented to
regresssion testing: by recording user’s interaction with the GUI and replaying
it later, it can detect undesired changes in the GUI state machine due to modi-
fications on the source code. It is also inspired by JUnit, and it supports scripts
with a function similar to jfcUnit. The test case design is manual [19]. Pounder is
another tool similar tojfcUnit and Abbot [17]. None of these tools can generate
a set of test cases, at most they can run the test cases designed by the humans.

There are some studies regarding improving test cases or modifying them
after a software change, but their relation with this research is weak. The ex-
ploration of the event search space should be extensive for test case generation,
but it can be local for test case improvement or modification.

The research presented here can be considered both a modification and an
extension of research mentioned previuosuly by Memon [13][14] and Bauersfeld
[2][3]. We use Memon’s event-flow model but not its planning approach. We use
ACO as Bauersfeld did, but instead of focusing in a single sequence of events, we
contemplate a set of sequence with the goal of achiving complete test coverage
of GUI’s components (widgets) with the minimum amount of sequences. The
generation of an optimal sequence on Bauersfeld’s approach is the unique goal
of the ACO algorithm, but in creating a set of sequences, non repetition of events
is also considered in our approach. Our final goal it is not testing many methods
with onley one test (sequence of events); it is testing all components or widgets
in a GUI at least once using a set of test cases of minimum size.

3 Event-flow model used in this research

The event-flow model can represent all possible sequences of events in a GUI as a
graph. The nodes represent an event e in the GUI. An event is a response of the
system to a user interaction (a click on a button triggers an onClick event). Some
events (at least one) can be executed directly after the application launched, and
are called initial events. An directed edge (e, e’) between two events e, e’ states
that the event e’ can be executed immediately after the event e. Conversely, if
there is no directed edge between events e, e’ then event e’ cannot be executed
immediately after event e [1]. An example of a GUI and its corresponding graph
is shwon in fig.1. In that figure, it can be apreciated that some nodes have two
way links (for example, File and New) but others are one way only (Send to →
Routing R.). Some case, as Edit and Copy, are two way as a fiction (after Copy,
most software automatically goes bak to File, or exit the menu). Inital events
those available at the GUI’s start, as File, Edit, etc. in most text editors.

In this paper, a simplified event-flow model is used. The main difference with
the complete model [14] is that different states are not considered. Therefore the
graph is always the same, and the ability to reach an event depends only on the
actual event, not on past events in the sequence.

Fig. 1. A GUI and its corresponding event-flow graph

4 Algorithm

The problem of generating a good test case can be defined as: given a event-flow
graph representing a GUI, find the smallest set of paths in the graph such as a
coverga criteria is met, where each path represent a event sequence valid on the
GUI. The coverage criteria is that each event appears as part of al least c paths,
with c a predefined integer. In this paper, c = 1 as our first research effort in
this field.

The problem can be divided into 2 subproblems. Looking at the final result,
the last subproblem it is easily described as a set coverage problem. Set covering
is defined as: given a collection S of sets over a universe U, find the minimum-
cardinality set cover, where a set cover C ⊆ S is a subcollection of the sets
whose union is U [21]. Set coverage is a NP-complete problem, so it is very hard
to find the best solution; but it is possible to quickly find close to best solutions
by heuristics and meta-heuristics. A greedy heuristic has been chosen by its
simplicity and speed, and because it has been proved that a greedy algorithm
provides good approximations to the optimal solution for both basic set covering
and more general weighted set covering[6]. Greedy heuristics are a family of
contructive heuristics, that is, they build a solution step by step, making the
locally optimal choice at each step with the hope of finding a global optimum.
Regarding the greedy algorithm set covering, the candidate set of solutions S is
finite and its elements should be valid paths in the event-flow graph.

Therefore, the previous subproblem it is how to generate good paths (ele-
ments of S) for the greedy algorithm, because it is not practical to generate
all possible paths in the praph (slow to generate, and generates large S which
occupies much memory and takes more time for greedy heuristics). The logical
procedure would be to generate a not-so-large number of paths , where the nodes
common to any two different paths is small in average (this last criteria should
lead to a covering of U with the least number of paths). With these ideas in
mind, a modified Ant Colony Optimization (ACO) is proposed here. ACO is
a metaheuristic born originally to find optimal path in a graph [7] and it has
been applied to many kinds of problemas such as traveling salwesman, vehicle
routing, scheduling, etc. [8]. The goal here is to obtain many paths, not only one
optimal path; because ACO is very good for find paths in graph problems, it
looked promising.

ACO is a metaheuristic that is inspired by the pheromone trail laying and
following behavior of some ant species. Artificial ants in ACO are stochastic
solution construction procedures that build candidate solutions for the problem
instance under concern by exploiting artificial pheromone information that is
adapted based on the search experience of the ants and on available heuristic
information [8]. The basic loop on ACO is: while some termination condition is
not met do (a) Construct Ant solutions, (b) Apply local search (optional) and
(c) Update pheromones [8].

Before presenting the algorithm, the variables, their definitions and formulae
are explained in table 1.

Before continuing, an important observation must be made. The main re-
quirement for this ACO+Greedy method is to have the desired event-flow model
at the start; that is, the software engineer must write down the expected be-
haviour of the GUI (transitions between events allowed and transitions not al-
lowed) as a graph. ACO+Greedy then can be used to generate the set of test
cases required to test all events at least once. There is no guarantee to test all
transitions, but if we suppose that each event (representing a GUI component or
widget) is associated with a method call, then all methods associated with GUI

Table 1. Variables and their meaning

NC counter for the ACO iteration

NCmax maximum number of iterations

N Number of events on the GUI
(number of nodes in the graph)

m number of ants

τ pheromone matrix

S list of partial solutions

TC set of test cases

LTk Tabu list, nodes already visited
for ant k in actual iteration

LO List of nodes not yet visited

LND List of destination nodes

LG Global list of nodes already visited

Lk length of actual path

d distance matrix (1=there is edge
from node i to node j, 0 otherwise)

η visibility matrix (1/dij
if dij > 0, 0 otherwise)

∆τmij amount of pheromone
deposited by ant m on edge i→j

ρ persistency coefficient
for pheromones

τij = ρ.τij Actualization of pheromone
+
∑m

k=1
∆τij

Pij =
ταijη

β
ij∑

j 6∈LT
τα
ij
η
β
ij

Probablity of the ant going

from node i to j

α coefficient for the pheromone

β coefficient for the distance

Q pheromone constant for one ant,
Q/Lk is deposited along the path

LI list of initial nodes (initial events)

S1 adjacency matrix of S, S1ij = 1 if
path i does contain node j,

0 otherwise

input are tested at least once. And the probability of catching a transtion error
(transition allowed in the GUI design but not implemented in the source code,
example: a text editor is supposed to have disabled the Paste widget disabled at
its start, but after clicking the Copy widget, Paste should be enabled, but the
programmer forgot to code it) is greater if we run through a set of test cases
instead of only one test (which is the approach of previous research [13][14][2][3]).

We start with the graph, the initial nodes or events and parameters for the
ACO. The logic of this algorithm is: at first many paths (sequences of events)
are created, then any repeated path is deleted, and then a covering for the set
of all events is generated. The elements of the set covering are the test cases. as
seen in algorithm 1 (ACO+Greedy).

Algorithm 1 ACO+Greedy

Require: d, ρ, α, β, LI
1: S=ACO(d, ρ, α, β, LI)
2: Eliminate repetitions in S
3: TC=Greedy(S)
4: return TC

The algorithm 2 (ACO) is a modification of the ACO for finding the shortest
path between an origin node and a destination node. The test case generation
needs not the best path, it needs many paths which could cover the set U of all
events (nodes). This is achieved by not having a destination node. The algorithm
starts with matrix d (representing the event-flow graph) and a list LI (list of
initial nodes); it tries to generate a path starting from a random node e ∈ LI,
and tries to create a path as long as possible (see loop at lines 11–22) without
re-visiting any event already visited by any ant in the actual iteration (until it
is impossible to reach a new node directly from the actual node) using a Tabu
List (LTk) for keeping tabs on already-visited nodes, and then actualizes the
pheromeone matrix . The next event is chosen randomly but using probability
matrix P, which depends on the pheromone matrix and the distances (see table
1). The next ant does the same (see loop at lines 3–25), until no node is left
unvisited or until all further paths are blocked. In the first case, it skips to the
next iteration (see lines 7–8). In the last case, it ignores the tabu list and starts
creating paths between a random initial node and a random non-covered node
using Dijkstra shortest path algorithm (see lines 18–20). After all ants are done,
it evaporates some ratio 1−ρ of pheromones (see line 27) and it goes to the next
iteration. All the paths from all the ants on all iterations all saves in list S (see
line 28).

Algorithm 3 (Greedy) starts by converting S into its adjacency matrix S1.
Information about order in the event sequence is lost, but it is not necessary for
solving the covering set problem. An example of the original S and its matrix
form is shown in figure 2. In that figure, should S has only the four paths and
the GUI only the five events shown, the optimal covering would be the set

Algorithm 2 ACO

Require: d, ρ, α, β, LI
1: for NC = 1;NC <= NCmax;NC + + (Iterations) do
2: LT=∅, S=∅
3: for k = 1; k <= m; k + + (Ants) do
4: Update LO=LO-{nodes visited in this iteration}
5: Choose node e at random from LI
6: if LO=∅ then
7: Update LG
8: Break from inner FOR loop
9: else

10: j=1
11: while j <= N do
12: if Is there at least one node e′ 6∈ LTk with an edge e→ e′ then
13: Select next node e at random using P, from all e’ candidates
14: if e ∈ LO update LND
15: j=j+1
16: Update P
17: Update LTk
18: if LND=∅ then
19: Use Dijkstra shortest path to create the path from actual node e to

a random node in LO, ignoring tabu lists; update j if new nodes are
visited

20: end if
21: end if
22: end while
23: Update LG
24: end if
25: end for
26: Calculate path length Lk
27: Update τ , evaporating pheromones
28: S=S ∪ Path ant 1 ∪ Path ant 2 ∪ ... ∪ Path ant m
29: end for
30: return S

{path1, path2} or the set {path3, pathw}, both with cardinality 2. The greedy
heuristic is an step by step procedure; each step takes the path pi with the
maximum covering over the non-covered events, then set asides that path, and
eliminate the columns of matrix S1 whic are covered by pi, thus eliminating
those events from the list of non-covered events. It continues until there are no
more non-covered events.

01100pathw

…

10011path3

10110path2

01001path1

eNeN-1…e3e2e1Path\Event (node)

S={ {e1, eN-1}, {e3,eN,e2},{e2,e1,eN}, …, {e3,eN-1} }
path1: e1� eN-1

path2: e3� eN� e2

Fig. 2. A set of paths S and its matrix form

5 Results and analysis

A set of test cases was created for the GUI of MS Windows Wordpad. Wordpad
was chosen because, as mentioned in section 4, the main requirement for this
method is to design the expected or correct event-flow model (graph), a task for
the human software engineer, and Wordpad have a medium-sized GUI that is not
so complex that creating its graph become burdensome and error-prone for the
human engineer. The number of events are 73, and the number of directed edges
is 154. The algorithm has been proved with different combinations of values of
α(0, 0.2, 0.4, 0.6, 0.8, 1) and β(0, 0.2, 0.4, 0.6, 0.8, 1, 1.4, 1.8, 2.2, 2.6, 3), for a
total of 66 combinations, and 35 ants per iteration were used. Each comination
was tested 5 times in order to account for the random nature of the ACO. The
quality of the best solution for each combination is shown in table 2 and quality
of the average solution is shown in table 3. As it can noted, the best combination
is α = 1 and β = 0.4 with an average solution of size 27 and a best solution of
size 26. Both are the best results between the results of all 66 combinations. The
processing time was less than 1 minute in a conventional desktop PC.

Algorithm 3 Greedy

Require: S
1: TC=∅
2: Create S1 (Conectivity matrix of S)
3: nr= number of rows on S1
4: nc= number of columns on S1
5: while max(S1ij > 0) do
6: i = Argmax

∑
j
S1ij

7: TC = TC∪ i-th element from S
8: for kr=1;kr¡=nr;kr++ do
9: for kc=1;kc¡=nc;kc++ do

10: if S1i,kc = 1 then
11: S1kr,kc = 0
12: end if
13: end for
14: end for
15: end while
16: return TC

Table 2. Best solution (minimum cardinality of set of test cases)

α
0 0.2 0.4 0.6 0.8 1.0

β

0 28 27 27 26 27 27
0.2 28 27 27 27 26 28
0.4 28 27 26 26 28 26
0.6 27 27 27 27 26 27
0.8 27 27 26 27 26 27
1 27 27 26 26 27 27
1.4 27 27 27 26 26 27
1.8 27 27 26 27 26 27
2.2 28 27 26 26 27 27
2.6 27 27 27 28 27 27
3 28 27 27 27 27 27

Table 3. Average solution (average cardinality of set of test cases)

α
0 0.2 0.4 0.6 0.8 1.0

β

0 29 28 28.2 27.6 27.6 28.2
0.2 28.6 27.6 28 29.2 28 28.6
0.4 28.8 28.2 27.6 27.8 29 27
0.6 29 28.4 28.2 28.8 28 28.4
0.8 29 28.2 27.6 27.8 27.2 28.2
1 28 28.6 28.4 27.2 27.8 28.4
1.4 28.6 27.8 28 27.2 27.8 28.2
1.8 28.4 28.6 27.4 28 28 28.6
2.2 28.6 28.8 27.8 27.2 28.2 28.4
2.6 27.8 28 27.8 28.4 28 28
3 28.8 28 28.2 27.8 28.2 28

6 Conclusions

ACO proves to be a powerful approach to create a candidate set for converting
the GUI automatic test case generation into a manageable set covering problem,
because the candidate paths are good paths with less overlaping. The number
of ants should be at least half the number of events, and the best combination
of parameters α and β was found experimentally. The speed of this algorithm
is very good and it is far fastest than human test cases generation, but the
experiment done is not very complex. A more complex experiment should be
done in the future for better validation of this approach.

Other papers suggest that each event should be covered at least by 5 different
test cases. This algorithm may adapt to that problem, and it is an research
opportunity. By now, our software tools read data from a text file representing
the adjacency matrix. In the future, some graphical way for entering the event-
flow graph could be developed. The dependency of one event on another events
(states) has not been studied here, and it is another research challenge ahead.

References

1. S. Arlt, I. Banerjee, C. Bertolini, A. M. Memon, and M. Schäf. Grey-box GUI
testing: Efficient generation of event sequences. CoRR, abs/1205.4928, 2012.

2. S. Bauersfeld, S. Wappler, and J. Wegener. An approach to automatic input se-
quence generation for gui testing using ant colony optimization. In Proceedings of
the 13th Annual Conference Companion on Genetic and Evolutionary Computa-
tion, GECCO ’11, pages 251–252, New York, NY, USA, 2011. ACM.

3. S. Bauersfeld, S. Wappler, and J. Wegener. A metaheuristic approach to test
sequence generation for applications with a gui. In M. Cohen and M. Cinnide,
editors, Search Based Software Engineering, volume 6956 of Lecture Notes in Com-
puter Science, pages 1173–187. Springer Berlin Heidelberg, 2011.

4. P. Brooks, B. Robinson, and A. Memon. An initial characterization of industrial
graphical user interface systems. In Software Testing Verification and Validation,
2009. ICST’09. International Conference on, pages 11–20. IEEE, 2009.

5. T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng., 4(3):178–187, May 1978.

6. V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of
operations research, 4(3):233–235, 1979.

7. M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-heuristic. In
Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on,
volume 2. IEEE, 1999.

8. M. Dorigo and T. Stützle. Ant colony optimization: overview and recent advances.
Handbook of metaheuristics, pages 227–263, 2010.

9. E. Dustin, J. Rashka, and J. Paul. Automated software testing: introduction, man-
agement, and performance. Addison-Wesley Professional, 1999.

10. S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state models. IEEE Trans. Softw. Eng., 17(6):591–603,
June 1991.

11. C. Hu and I. Neamtiu. Automating GUI testing for android applications. In
Proceedings of the 6th International Workshop on Automation of Software Test,
AST ’11, pages 77–83, New York, NY, USA, 2011. ACM.

12. A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi. Characterizing failures in
mobile OSes: A case study with android and symbian. In Software Reliability
Engineering (ISSRE), 2010 IEEE 21st International Symposium on, pages 249–
258. IEEE, 2010.

13. A. Memon, M. Pollack, and M. Soffa. Hierarchical GUI test case generation using
automated planning. Software Engineering, IEEE Transactions on, 27(2):144–155,
2001.

14. A. M. Memon. An event-flow model of GUI-based applications for testing. Softw.
Test. Verif. Reliab., 17(3):137–157, Sept. 2007.

15. Mercury Interactive. WinRunner Users Guide Version 7.6. http://www.cbueche.

de/WinRunner\%20User\%20Guide.pdf, 2003.
16. B. A. Myers and M. B. Rosson. Survey on user interface programming. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems CHI
1992, New York, NY, USA, 1992. ACM.

17. M. Pekar. Pounder. http://pounder.sourceforge.net/, 2002.
18. R. K. Shehady and D. P. Siewiorek. A method to automate user interface test-

ing using variable finite state machines. In Proceedings of the 27th International
Symposium on Fault-Tolerant Computing (FTCS ’97), FTCS ’97, pages 80–88,
Washington, DC, USA, 1997. IEEE Computer Society.

19. T. Wall. Getting Started with the Abbot Java GUI Test Framework. http:

//abbot.sourceforge.net/doc/overview.shtml, 2011.
20. L. White, H. Almezen, and N. Alzeidi. User-based testing of GUI sequences and

their interactions. In Proceedings of the 12th International Symposium on Software
Reliability Engineering, ISSRE ’01, pages 54–63, Washington, DC, USA, 2001.
IEEE Computer Society.

21. N. E. Young. Greedy set-cover algorithms. In M.-Y. Kao, editor, Encyclopedia of
Algorithms. Springer, 2008.

