Tutorial:

Procesamiento de Lenguaje Natural en Ingeniería de Requisitos: Contribuciones Potenciales y Desafíos de Investigación

CIBSE 2015 – Lima, Peru

Dr Ricardo Gacitúa
ricardo.gacitua@ceisufro.cl

Centro de Estudios en Ingeniería de Software
Depto. Cs. Computación e Informática
Universidad de La Frontera
Temuco, Chile
Indice

• Ingeniería de Requerimientos (RE)
• Procesamiento de Lenguaje Natural (NLP)
• Avances en la relación entre RE & NLP
• Contribuciones Potenciales
• Desafíos de Investigación
Después de este tutorial, podrás:

- Definir RE y su describir su importancia.
- Definir NLP y sus áreas de acción.
- Conocer el estado del arte en la relación entre NLP y RE.
- Describir las contribuciones potenciales de NLP para RE.
- Listar los principales desafíos para la investigación en RE.
Software Engineering Process

El éxito o falla de un proyecto de software es altamente dependiente de la fase de Ingeniería de Requisitos.

• Es una división del trabajo de desarrollo de software en distintas fases (o etapas) que tienen actividades las cuales persiguen una mejor planificación y administración.
Increasing Cost of Defects

Cost of Correcting Defects

Costs of Correcting Defects

- Rqmts.: $139
- Design: $455
- Coding: $977
- Testing: $7,136
- Maint.: $14,102

$/Defect Corrected
Defects Introduced

Graphs taken from: Benefit From Unit Testing in The real world.
REQUIREMENTS ENGINEERING
Requirements Engineering

DEFINITION Requirements engineering is the branch of software engineering concerned with the real-world goals for, functions of, and constraints on software systems. It is also concerned with the relationship of these factors to precise specifications of software behavior, and to their evolution over time and across software families.

“Real-world goals” represent:
- the ‘why’ as well as
- the ‘what’ of a system.

“Precise specifications” provide the basis for:
- Analysing requirements,
- Validating that they are indeed what stakeholders want,
- Defining what designers have to build, and
- Verifying that they have done so correctly upon delivery.

“Evolution over time and across software families”:
- a changing world and the need to reuse partial specifications.
Requirements Engineering Process

- The use of the term *engineering* in RE serves as a reminder that RE is an important part of an engineering process.

- Real-world problem
- Appropriateness and cost-effectiveness of the solution
RE draws on the cognitive and social sciences

This provides an understanding of the difficulties people may have in describing their needs

Cognitive psychology

This provides an understanding of the political and cultural changes caused by computerisation

Sociology

This provides a methodological approach to observing human activities

Anthropology

This is important because RE is largely about communication

Linguistics

The context in which RE takes place is usually a human activity system, and the problem owners are people.
Requirements Engineering Process
Requirements Engineering Process

Requirements Elicitation
- Identify system stakeholders, stakeholder goals, needs, & expectations
- Identify system boundaries

Requirements Analysis
- Requirements Classification
 - Enterprise modeling
 - Data modeling
- Conceptual Modeling
 - Behavioral modeling
 - Domain modeling
- Architectural Design & Requirements Allocation
 - Non-functional requirements

Requirements Specification
- Requirements reviews
- Prototyping
- Model validation
- Acceptance tests

(design & implementation of acceptance tests overlap the requirements process & the testing process)

RE Process -> Elicitation

One of the most important goals of elicitation is to find out what problem needs to be solved, and hence identify system boundaries.
Requirements Elicitation Problems

- **Problems of scope**
 - the boundary of the system is ill-defined
 - unnecessary design information may be given
- **Problems of understanding**
 - users have incomplete understanding of their needs
 - users have poor understanding of computer capabilities and limitations
 - analysts have poor knowledge of problem domain
 - user and analyst speak different languages
 - ease of omitting “obvious” information
 - conflicting views of different users
 - requirements are often vague and untestable, e.g., “user friendly” and “robust”
- **Problems of volatility**
 - requirements evolve over time
RE Process -> Elicitation

- **A) BOUNDARIES** - Identifying and agreeing a system’s boundaries affects all subsequent elicitation efforts.
 - The identification of stakeholders and user classes, of goals and tasks, and of scenarios and use cases all depend on how the boundaries are chosen.
RE Process -> Elicitation

- **B) IDENTIFYING STAKEHOLDERS**—individuals or organisations who stand to gain or lose from the success or failure of a system — is also critical.

 - Stakeholders include:
 - customers or clients (who pay for the system),
 - developers (who design, construct and maintain the system), and
 - users (who interact with the system to get their work done).

Alexander, I., "Stakeholders: who is your system for?," *Computing & Control Engineering Journal*, vol.14, no.2, pp.22,26, April/May 2003
RE Process -> Elicitation

- C) GOALS - denote the objectives a system must meet.

Eliciting goals focuses the requirements engineer on the problem domain and the needs of the stakeholders, rather than on possible solutions to those problems.
RE Process -> Elicitation- Goal categorization
RE Process -> Elicitation - Use Cases to represent user tasks

- It is often the case that users find it difficult to articulate their requirements.
- A requirements engineer can resort to eliciting information about the *tasks* users currently perform and those that they might want to perform.
RE -> Modelling and Analysing Requirements

Modelling – the construction of abstract descriptions that are amenable to interpretation – is a fundamental activity in RE.
RE -> Modelling and Analysing Requirements -

• **A) Enterprise Modelling** -

 Enterprise modelling and analysis deals with:

 – understanding an *organisation’s structure*;
 – the *business rules* that affect its operation;
 – the *goals, tasks and responsibilities* of its constituent members; and
 – the *data* that it needs, generates and manipulates.
RE -> Modelling and Analysing Requirements -

• B) **Data Modelling** -
Decisions need to be made about what information the system will need to represent, and how the information held by the system corresponds to the real world phenomena being represented.

 – Data modelling provides the opportunity to address these issues in RE.
C) **Behavioural Modelling**

Modelling requirements often involves modelling the dynamic or functional behaviour of stakeholders and systems, both existing and required.
D) **Domain Modelling** - A significant proportion of the RE process is about developing domain descriptions. A model of the domain provides an abstract description of the world in which an envisioned system will operate.
E) Modelling Non-Functional Requirements (NFRs)

- Non-functional requirements (also known as quality requirements) are generally more difficult to express in a measurable way, making them more difficult to analyse.
RE -> Modelling and Analysing Requirements -

- **Analyzing Requirements Models** - A primary benefit of modelling requirements is the opportunity this provides for analysing them determining whether the stated requirements are clear, complete, consistent and unambiguous, and resolving any apparent conflicts.

https://wiki.eclipse.org/Requirements_Statement
RE -> Requirement Specification

Requirement Specification is the direct result of a requirements analysis and can refer to Software requirements specification and Hardware requirements specification.
RE - Software requirements specification (SRS)

- A software requirements specification (SRS) is a comprehensive description of the intended purpose and environment for software under development. The SRS fully describes what the software will do and how it will be expected to perform.
- The process of writing down the user and system requirements in a requirements document.
RE -> Requirements Validation

Requirement Validation is an iterative process which takes place throughout the lifecycle of the project.

(Design & implementation of acceptance tests overlap the requirements process & the testing process)
RE -> Requirements Validation

- **Boehm’s definition:**
 - Validation: Am I building the right system?
 - Verification: Am I building the system right?

- **Requirements validation is difficult for two reasons:**
 - Philosophical in nature, and concerns the question of truth and what is knowable.
 - Social, and concerns the difficulty of reaching agreement among different stakeholders with conflicting goals.
RE - > Additional - Evolving Requirements

• Managing change is a fundamental activity in RE.
 – Changes to requirements documentation
 • Traceability links to monitor and control the impact of changes in different parts of the documentation.
 – Managing inconsistency in requirements specifications as they evolve is a major challenge.
RE - requirements validation session
RE Summary

1. **SOCIAL SCIENCES:** RE draws on the cognitive and social sciences:
 - Cognitive Psychology, Anthropology, Sociology, Linguistics

2. **BOUNDARIES:** The identification of stakeholders and user classes, of goals and tasks, and of scenarios and use cases all depend on how the boundaries are chosen.

3. **MODELS:** Models can be used to represent a whole range of products of the RE process.

4. **COMMUNICATION:** RE is not only a process of discovering and specifying requirements, it is also a process of facilitating effective communication of these requirements among different stakeholders.

5. **DOCUMENTATION:** The way in which requirements are documented plays an important role in ensuring that they can be read, analysed, (re-)written, and validated.

6. **VALIDATION:** Requirements validation is difficult for two reasons.
 - The first reason is philosophical in nature, and concerns the question of truth and what is knowable.
 - The second reason is social, and concerns the difficulty of reaching agreement among different stakeholders with conflicting goals.

7. **CHANGES:** Managing changing requirements is not only a process of managing documentation, it is also a process of recognising change through continued requirements elicitation, re-evaluation of risk, and evaluation of systems in their operational environment.
RE Humour

"IT MUST BE PERFECT!"

"WE NEED IT TOMORROW!"

"IT MUST BE CHEAP!"

"VP, OPERATIONS"

"VP, MARKETING"

"VP, FINANCE"

"HOW TO TORTURE A BUSINESS ANALYST #3"

© Ricardo Gacitúa
distributed under Creative Commons Attribution License
Tutorial:

Procesamiento de Lenguaje Natural en Ingeniería de Requisitos: Contribuciones Potenciales y Desafíos de Investigación

CIBSE 2015 – Lima, Peru

Dr Ricardo Gacitúa
ricardo.gacitua@ceisufro.cl

Centro de Estudios en Ingeniería de Software
Depto. Cs. Computación e Informática
Universidad de La Frontera
Temuco, Chile
Indice

• Ingeniería de Requerimientos (RE)
• Procesamiento de Lenguaje Natural (NLP)
• Avances en la relación entre RE & NLP
• Contribuciones Potenciales
• Desafíos de Investigación
Después de este tutorial, podrás :

- **Definir RE y su describir su importancia.**
- **Definir NLP y sus áreas de acción.**
- **Conocer el estado del arte en la relación entre NLP y RE.**
- **Describir las contribuciones potenciales de NLP para RE.**
- **Listar los principales desafíos para la investigación en RE.**
Can computational methods aid the understanding of human language?
NATURAL LANGUAGE PROCESSING
Motivation - Natural Language Processing (NLP)

- NLP is the branch of computer science focused on developing systems that allow computers to communicate with people using everyday language.
- Also called Computational Linguistics
 - Also concerns how computational methods can aid the understanding of human language.
Natural Language Processing

DEFINITION Natural language processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages.
Natural Language Processing

NLP is a field of computer science, artificial intelligence, and linguistics concerned with the interactions between computers and human (natural) languages.

- It is the analysis of human language so that computers can understand natural languages as humans do.
- Many challenges in NLP involve natural language understanding, that is, enabling computers to derive meaning from human or natural language input, and others involve natural language generation.

Information, Knowledge and Wisdom

Knowledge is knowing a tomato is a fruit.

Wisdom is not putting it in a fruit salad.
Natural Language Processing

- Natural language
- Conversational
- Contextual
- Personal
- Works with built-in apps
- Dictation anywhere
- 3G + Wi-Fi
Modular Comprehension
Ambiguity

• Natural language is highly ambiguous and must be disambiguated.
 – I saw the man on the hill with a telescope.
Major tasks in NLP

<table>
<thead>
<tr>
<th>RE</th>
<th>NLP</th>
<th>Survey</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Summarization</td>
<td>Co-reference Resolution</td>
<td>Discourse Analysis</td>
<td>Machine Translation</td>
</tr>
<tr>
<td>Produce a readable summary of a chunk of text</td>
<td>Given a sentence, determine which words ("mentions") refer to the same objects ("entities")</td>
<td>To identifying the discourse structure of connected text, (i.e. elaboration, explanation, contrast)."</td>
<td>Automatically translate text from one human language to another.</td>
</tr>
<tr>
<td>Morphological Segmentation</td>
<td>Named Entity Recognition (NER)</td>
<td>Natural Language Understanding</td>
<td>Optical character recognition</td>
</tr>
<tr>
<td>Separate words into individual morphemes and identify the class of the morphemes.</td>
<td>Given a stream of text, determine which items in the text map to proper names</td>
<td>Convert chunks of text into more formal representations such as first-order logic</td>
<td>Given an image representing printed text, determine the corresponding text.</td>
</tr>
<tr>
<td>Sentence breaking</td>
<td>Sentiment Analysis</td>
<td>Word sense disambiguation</td>
<td>Speech Segmentation</td>
</tr>
<tr>
<td>Given a chunk of text, find the sentence boundaries.</td>
<td>Extract subjective information to determine "polarity" about specific objects.</td>
<td>Many words have more than one meaning; we have to select the meaning which makes the most sense in context.</td>
<td>Given a sound clip of a person or people speaking, separate it into words</td>
</tr>
<tr>
<td>Speech Recognition</td>
<td>Information Retrieval</td>
<td>Information Extraction</td>
<td></td>
</tr>
</tbody>
</table>

RE

- Automatic Summarization
- Morphological Segmentation
- Sentence breaking
- Speech Recognition

NLP

- Co-reference Resolution
- Named Entity Recognition (NER)
- Discourse Analysis
- Natural Language Understanding
- Optical character recognition
- Speech Segmentation
- Topic Segmentation and recognition
- Word Segmentation

Survey

- Machine Translation
- Part-of-speech tagging
- Question Answering

Challenges

- Parsing
- Relationship Extraction
- Information Retrieval
- Information Extraction
<table>
<thead>
<tr>
<th>RE</th>
<th>NLP</th>
<th>Survey</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Summarization</td>
<td>Coreference Resolution</td>
<td>Discourse Analysis</td>
<td>Machine Translation</td>
</tr>
<tr>
<td>Produce a readable summary of a chunk of text</td>
<td>Given a sentence, determine which words ("mentions") refer to the same objects ("entities")</td>
<td>To identifying the discourse structure of connected text, i.e. elaboration, explanation, contrast."</td>
<td>Automatically translate text from one human language to another.</td>
</tr>
<tr>
<td>Morphological Segmentation</td>
<td>Named Entity Recognition (NER)</td>
<td>Natural Language Understanding</td>
<td>Optical character recognition</td>
</tr>
<tr>
<td>Separate words into individual morphemes and identify the class of the morphemes.</td>
<td>Given a stream of text, determine which items in the text map to proper names.</td>
<td>Convert chunks of text into more formal representations such as first-order logic.</td>
<td>Given an image representing printed text, determine the corresponding text.</td>
</tr>
<tr>
<td>Sentence breaking</td>
<td>Sentiment Analysis</td>
<td>Word sense disambiguation</td>
<td>Speech Segmentation</td>
</tr>
<tr>
<td>Given a chunk of text, find the sentence boundaries.</td>
<td>Extract subjective information to determine "polarity" about specific objects.</td>
<td>Many words have more than one meaning; we have to select the meaning which makes the most sense in context.</td>
<td>Given a sound clip of a person or people speaking, separate it into words.</td>
</tr>
<tr>
<td>Speech Recognition</td>
<td>Information Retrieval</td>
<td>Information Extraction</td>
<td></td>
</tr>
</tbody>
</table>
| Given a sound clip of a person speaking, determine the textual representation of the speech. | This is concerned with storing, searching and retrieving information. | This is concerned with the extraction of semantic information from text.
NLP-> Automatic Discourse Analysis

- "The study of well-established meanings or ideas around a topic which shape how we can [think and] talk about it." Stephanie Taylor’s (2010)
- For example: Segmentation by thematic

BACKGROUND KNOWLEDGE:
Recent studies indicate ...
... the previously proposed ...
... is universally accepted ...

CONTRASTING IDEAS:
... unorthodox view resolves ...
paradoxes ...
In contrast with previous hypotheses ...
... inconsistent with past findings ...

GENERALIZING:
... emerging as a promising approach
Our understanding ... has grown exponentially ...
... growing recognition of the importance ...

NOVELTY:
... new insights provide direct evidence we suggest a new ...
approach ...
... results define a novel role ...

SIGNIFICANCE:
studies ... have provided important advances
Knowledge ... is crucial for ...
understanding
valuable information ... from studies

SURPRISE:
We have recently observed ...
surprisingly
We have identified ... unusual
The recent discovery ... suggests
intriguing roles

OPEN QUESTION:
... little is known ...
... role ... has been elusive
Current data is insufficient ...

SUMMARIZING:
The goal of this study ...
Here, we show ...
Altogether, our results ... indicate
NLP -> Text Summarization

- **Text summarisation**
 - a reductive transformation of source text to summary text through content reduction by selection and/or generalisation on what is important in the source. (Sparck Jones, 1999)
 - the process of distilling the most important information from a source (or sources) to produce an abridged version for a particular user (or users) and task (or tasks). (Mani and Maybury, 1999)

Automatic text summarisation = The process of producing summaries automatically.
NLP - > Machine Translate

- Automatically translate text from one human language to another.
 - On a basic level, MT performs simple substitution of words in one natural language for words in another, but that alone usually cannot produce a good translation of a text because recognition of whole phrases and their closest counterparts in the target language is needed.
 - Solving this problem with corpus and statistical techniques is a rapidly growing field that is leading to better translations, handling differences in linguistic typology, translation of idioms, and the isolation of anomalies.
POS Tagging

- It is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech, based on both its definition, as well as its context—i.e. relationship with adjacent and related words in a phrase, sentence, or paragraph.

- A simplified form of this is commonly taught to school-age children, in the identification of words as nouns, verbs, adjectives, adverbs, etc.
NLP - > Parsing

Parsing or syntactic analysis is the process of analysing a string of symbols, either in natural language or in computer languages, according to the rules of a formal grammar.
NLP -> Named Entity Recognition (NER)

Automatically find names of people, places, products, and organizations in text

In 1917, Einstein applied the general theory of relativity to model the large-scale structure of the universe. He was visiting the United States when Adolf Hitler came to power in 1933 and did not go back to Germany, where he had been a professor at the Berlin Academy of Sciences. He settled in the U.S., becoming an American citizen in 1940. On the eve of World War II, he endorsed a letter to President Franklin D. Roosevelt alerting him to the potential development of "extremely powerful bombs of a new type" and recommending that the U.S. begin similar research. This eventually led to what would become the Manhattan Project. Einstein supported defending the Allied forces, but largely denounced using the new discovery of nuclear fission as a weapon. Later, with the British philosopher Bertrand Russell, Einstein signed the Russell–Einstein Manifesto, which highlighted the danger of nuclear weapons. Einstein was affiliated with the Institute for Advanced Study in Princeton, New Jersey, until his death in 1955.
NLP -> Natural Language Understanding

• Convert chunks of text into more formal representations such as first-order logic.

(1) John loves Mary
NLP -> Natural Language understanding

After two years of online dating, John finally found the courage to formalize his relationship...

∃x | ∀x ∈ Ω, x = myself,
∃y | ∀y ∈
NLP -> Question Answering

• **Question Answering (QA)** is a computer science discipline within the fields of information retrieval and natural language processing (NLP), which is concerned with building systems that automatically answer questions posed by humans in a natural language.

Watson showed itself to be imperfect, but researchers at I.B.M. and other companies are already developing uses for Watson’s technologies that could have a significant impact on the way doctors practice and consumers buy products.
NLP -> Question Answering

VirtuOz, creator of intelligent virtual agents that provide companies with customer service and tech support, has raised $7M in a new round of funding. The Emeryville, Calif. company, which was founded in Paris, plans to use the investment for growth in both the United States and Europe.

The company’s virtual agents, or chatbots, are programmed to automate sales support for large and mid-sized businesses. By helping online shoppers resolve issues or make purchase decisions, VirtuOz helps web sites cut labor costs. The company claims that its agents, equipped with natural language processing (NLP) capabilities, can provide customer service to clients for one-tenth the cost of a traditional human support team.
NLP – Sentiment Analysis

• It aims to determine the attitude of a speaker or a writer with respect to some topic or the overall contextual polarity of a document.

• The attitude may be his or her judgment or evaluation (see appraisal theory), affective state (that is to say, the emotional state of the author when writing), or the intended emotional communication (that is to say, the emotional effect the author wishes to have on the reader)
Word Sense Disambiguation

WSD

- It is the process of identifying which sense of a word (i.e. meaning) is used in a sentence, when the word has multiple meanings.
- Word-sense disambiguation (WSD) is an open problem of natural language processing and ontology.
Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents.

Subject: curriculum meeting
Date: January 21, 2014
To: Ricardo Gacitua

Hi Ricardo, we’ve now scheduled the curriculum meeting. It will be in Gates 171 tomorrow from 10:00 – 11:30.
Carlos.
Examples - Pipeline

- **Phonology**
 - speech analysis
 - pronunciation model

- **Morphology**
 - morphological and lexical analysis
 - morphological rules

- **Syntax**
 - parsing
 - syntactic realization
 - lexicon and grammar

- **Semantics**
 - contextual reasoning
 - utterance planning
 - discourse context

- **Reasoning**
 - application reasoning and execution
 - domain knowledge

Natural Language Processing | © Ricardo Gacitúa
distributed under Creative Commons Attribution License
©Universidad de La Frontera
Example – Relation Detection

raw text (string)

sentence segmentation

sentences (list of strings)

tokenization

tokenized sentences (list of lists of strings)

part of speech tagging

pos-tagged sentences (list of lists of tuples)

entity detection

chunked sentences (list of trees)

relation detection

relations (list of tuples)
State of the art in language technologies

mostly solved

Spam detection
Let's go to Agra!
Buy V1AGRA...

Part-of-speech (POS) tagging
ADJ ADJ NOUN VERB ADV
Colorless green ideas sleep furiously.

Named entity recognition (NER)
PERSON ORG LOC
Einstein met with UN officials in Princeton

Sentiment analysis
Best roast chicken in San Francisco!
The waiter ignored us for 20 minutes.

Coreference resolution
Carter told Mubarak he shouldn't run again.

Word sense disambiguation (WSD)
I need new batteries for my mouse.

Parsing
I can see Alcatraz from the window!

Machine translation (MT)
第13届上海国际电影节开幕...
The 13th Shanghai International Film Festival...

Information extraction (IE)
You're invited to our dinner party, Friday May 27 at 8:30

still really hard

Question answering (QA)
Q. How effective is ibuprofen in reducing fever in patients with acute febrile illness?

Paraphrase
XYZ acquired ABC yesterday
ABC has been taken over by XYZ

Summarization
The Dow Jones is up
The S&P500 jumped
Housing prices rose

Dialog
Where is Citizen Kane playing in SF? Castro Theatre at 7:30. Do you want a ticket?
Tagging

- A tag is a non-hierarchical keyword or term assigned to a piece of information (such as an Internet bookmark, digital image, or computer file).
- This kind of metadata helps describe an item and allows it to be found again by browsing or searching.
<table>
<thead>
<tr>
<th>RE</th>
<th>NLP</th>
<th>Survey</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>mobile</td>
<td>rss</td>
<td>google</td>
<td>nmc2006</td>
</tr>
<tr>
<td>ed tech</td>
<td>small pieces</td>
<td>web</td>
<td>tagging mt</td>
</tr>
<tr>
<td>tweet</td>
<td>ML</td>
<td>adding media</td>
<td>nmc2007reg</td>
</tr>
<tr>
<td>code</td>
<td>web dev</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Statistical NLP

• Statistical natural-language processing uses stochastic, probabilistic and statistical methods to resolve some of the difficulties discussed above, especially those which arise because longer sentences are highly ambiguous when processed with realistic grammars, yielding thousands or millions of possible analyses.
NLP Summary

• Many challenges in NLP involve natural language understanding, that is, enabling computers to derive meaning from human or natural language input, and others involve natural language generation.

• NLP research is gradually shifting from lexical semantics to compositional semantics and, further on, narrative understanding.
 – Human-level natural language processing, however, is an AI-complete problem. That is, it is equivalent to solving the central artificial intelligence problem—making computers as intelligent as people, or strong AI.
 – NLP's future is therefore tied closely to the development of AI in general.
Tutorial:

Procesamiento de Lenguaje Natural en Ingeniería de Requisitos: *Contribuciones Potenciales y Desafíos de Investigación*

CIBSE 2015 – Lima, Peru

Ricardo Gacitúa

Centro de Estudios en Ingeniería de Software
Depto. Cs. Computación e Informática
Universidad de La Frontera
Temuco, Chile
Indice

• Ingeniería de Requerimientos (RE)
• Procesamiento de Lenguaje Natural (NLP)
• Avances en la relación entre RE & NLP
• Contribuciones Potenciales
• Desafíos de Investigación
Después de este tutorial, podrás:

• Definir RE y su describir su importancia.
• Definir NLP y sus áreas de acción.
• Conocer el estado del arte en la relación entre NLP y RE.
• Describir las contribuciones potenciales de NLP para RE.
• Listar los principales desafíos para la investigación en RE.
RE main challenges

<table>
<thead>
<tr>
<th>Sommerville, I.</th>
<th>Bashar Nuseibeh and Steve Easterbrook (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Changing requirements</td>
<td>1. Development of new techniques for formally modelling and analysing properties of the environment</td>
</tr>
<tr>
<td>2. Lack of standardization</td>
<td>2. Bridging the gap between requirements elicitation approaches based on contextual enquiry and more formal specification and analysis techniques</td>
</tr>
<tr>
<td>3. Differing perspectives</td>
<td>3. Richer models for capturing and analysing non-functional requirements</td>
</tr>
<tr>
<td>4. People and politics</td>
<td>4. Better understanding of the impact of software architectural choices on the prioritisation and evolution of requirements</td>
</tr>
<tr>
<td></td>
<td>5. Reuse of requirements models.</td>
</tr>
<tr>
<td></td>
<td>6. Multidisciplinary training for requirements practitioners.</td>
</tr>
</tbody>
</table>

NLP in RE – Current Potential Contributions

- **Stakeholders**
 - Goals
 - Requirements Elicitation
 - Abstraction Identification
 - Extracting information / Knowledge from grammatical structure

- **Abstractions**
 - FR
 - NFR
 - Requirement Analysis
 - Requirement Model Generation
 - Extracting information from Requirement Models

- **Information Retrieval**

- **Requirements Specification**
 - SRSs Generation
 - Requirement Quality Analysis
 - Avoiding or Detecting Pitfalls in NL SRSs
 - Processing Restricted NL SRSs

- **Requirements Validation**
 - SRSs validation (lightweight)
 - SRSs verification (lexical level)

- **Project & Portfolio Management**

- **Management**
 - Requirements traceability

© Ricardo Gacitúa
distributed under Creative Commons Attribution License
©Universidad de La Frontera
LITERATURE REVIEW
Evidence of Background Information
NLP in RE -> Abstraction Identification

NLP in RE -> Requirement Identification

NLP in RE -> Extracting information

NLP in RE → Requirement Model Generation

<table>
<thead>
<tr>
<th>Requirement Quality Analysis</th>
<th>SRSs Generation</th>
<th>Avoiding or Detecting Pitfalls in NL SRSs</th>
<th>Processing Restricted NL SRSs</th>
<th>SRSs validation (lightweight)</th>
<th>SRSs verification (lexical level)</th>
<th>Requirements traceability</th>
</tr>
</thead>
</table>

NLP in RE -> Extracting information from Req. Models

<table>
<thead>
<tr>
<th>Requirement Quality Analysis</th>
<th>SRSs Generation</th>
<th>Avoiding or Detecting Pitfalls in NL SRSs</th>
<th>Processing Restricted NL SRSs</th>
<th>SRSs validation (lightweight)</th>
<th>SRSs verification (lexical level)</th>
<th>Requirements traceability</th>
</tr>
</thead>
</table>

- Mathias Landhäusser, Sven J. Körner, and Walter F. Tichy. 2014. From requirements to UML models and back: how automatic processing of text can support requirements engineering. Software Quality Control 22, 1 (March 2014)

NLP in RE -> Information Retrieval

NLP in RE -> Requirements Quality Analysis

NLP in RE -> SRSs Generation

NLP in RE -> Avoiding or Detecting Pitfalls in SRSs

NLP in RE -> Processing Restricted NL SRSs

NLP in RE -> SRSs Validation

NLP in RE -> SRSs Verification

NLP in RE -> Requirements traceability

<table>
<thead>
<tr>
<th>Requirement Quality Analysis</th>
<th>SRSs Generation</th>
<th>Avoiding or Detecting Pitfalls in NL SRSs</th>
<th>Processing Restricted NL SRSs</th>
<th>SRSs validation (lightweight)</th>
<th>SRSs verification (lexical level)</th>
<th>Requirements traceability</th>
</tr>
</thead>
</table>

RE & NLP Considerations

• TEXTUAL FORM: Requirements normally does not exist in textual form.
 – Some information occurs naturally as text, typically process descriptions or predefined procedures, but much more is to be found in diagrams or in the physical reality surrounding the client.
 – Assuming however that the requirements definition task is being performed by an intelligent human and that a substantial body of machine readable text is available, there is no doubt that tools to scan, search, browse and tag that text could assist in developing a full and accurate statement of needs.

• COMPLEXITY:
 – Understanding in NLP seems to be a fractal-like problem.
 – Narrow domain understanding of natural language may be achieved in the medium term.

• COGNITIVE AND SOCIAL:
 – It is not possible to depend on NLP to solve the RE bottle-neck, since systems are, and will increasingly be recognised to be, social organisms, embodying everything from the deterministic microchip to the emotional and personal needs of the people involved.
Tutorial

RESEARCH CHALLENGES
RE Summary

1. **SOCIAL SCIENCES**: RE draws on the cognitive and social sciences:
 - Cognitive Psychology, Anthropology, Sociology, Linguistics

2. **BOUNDARIES**: The identification of stakeholders and user classes, of goals and tasks, and of scenarios and use cases all depend on how the boundaries are chosen.

3. **MODELS**: Models can be used to represent a whole range of products of the RE process.

4. **COMMUNICATION**: RE is not only a process of discovering and specifying requirements, it is also a process of facilitating effective communication of these requirements among different stakeholders.

5. **DOCUMENTATION**: The way in which requirements are documented plays an important role in ensuring that they can be read, analysed, (re-)written, and validated.

6. **VALIDATION**: Requirements validation is difficult for two reasons.
 - The first reason is philosophical in nature, and concerns the question of truth and what is knowable.
 - The second reason is social, and concerns the difficulty of reaching agreement among different stakeholders with conflicting goals.

7. **CHANGES**: Managing changing requirements is not only a process of managing documentation, it is also a process of recognising change through continued requirements elicitation, re-evaluation of risk, and evaluation of systems in their operational
RE Challenges

<table>
<thead>
<tr>
<th>Sommerville, I.</th>
<th>Bashar Nuseibeh and Steve Easterbrook (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Changing requirements</td>
<td>1. Development of new techniques for formally modelling and analysing properties of the environment</td>
</tr>
<tr>
<td>2. Lack of standardization</td>
<td>2. Bridging the gap between requirements elicitation approaches based on contextual enquiry and more formal specification and analysis techniques</td>
</tr>
<tr>
<td>3. Differing perspectives</td>
<td>3. Richer models for capturing and analysing non-functional requirements</td>
</tr>
<tr>
<td>5. Reuse of requirements models</td>
<td>5. Reuse of requirements models.</td>
</tr>
</tbody>
</table>

Research Challenges - Framework

Improving
Some Research Challenges for NLP in RE
RE & NLP -> Research Challenges

1. From speech to text: Automatic interview transcription
2. Automatic extraction and selection of pertinent domain documents.
 • Big Data, Semantic Web
3. Automatic extraction of scenarios
4. Automatic adequacy to standards and guidelines
5. Automatic identification of domain artefacts
 • Domain terminology and Semantic models (e.g. Ontologies)
RE & NLP -> Research Challenges

1. **Automatic identification of requirements artefacts**
 - FR, NFR, Goals, Stakeholders, Business rules, constraints etc.

2. **Automatic synthesize and validation of domain models**

3. **Automatic validation of Requirements**
 - Consistency, coherence, duplicity, etc.

4. **Automatic improvement of requirements**
 - Detection of ambiguity,

5. **Automatic validation of SRSs**

6. **Automatic building SRSs from domain models and NL text**
1. Reuse of domain and requirements artefacts

2. Scenarios Learning

3. Automatic building models of requirements artefacts from Meta-Models
 • Example: i* Metamodelling and Kaos Metamodel
RE & NLP -> Some Research Challenges

Artefacts Learning

- Speech to Text Repository
- V&V of Domain and Requirements artefacts
- Management: Changes & Traceability
- Management: Standards & Guidelines

Automatic Support

- Information Retrieval
- Requirements & Domain artefacts Identification
- Building Models / Meta-Models
- Reuse
- Documentation
Conclusion

• Requirements engineering is a non-trivial task and NLP is not able to solve all the requirements engineering problems.
 – However, it tackles an extremely important step, namely providing preliminary requirements and domain artefacts (e.g. preliminary models, preliminary lists of requirements and document summaries) for the stakeholders and requirements engineers.

• It is in supporting the social process, and not in supplanting it, that natural language processing will have its proper role.