
I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 1

Dynamic Composition of REST services
Jesus Bellido

Abstract—Service composition is one of the principles of service-oriented architecture; it enables reuse and allows
developers to combine existing services to create new services. Dynamic composition requires that service components
are chosen from a set of services with equal or similar functionality at runtime. The adoption of the REST services in
the industry has led to a growing number of services of this type, many with similar functionality. The existing dynamic
composition techniques are method-oriented whereas REST is resource-oriented, and considers only traditional services.
The REST architectural style has attracted a lot of interest from the industry due to the non-functional properties it
contributes to Web-based solutions. In this thesis, we contribute to the area of web service composition in REST
by proposing three techniques oriented to improve static and dynamic composition of this type of service. First we
introduce a technique for static composition proposing a set of fundamental control flow patterns in the context of
decentralized compositions of REST services. In contrast to current approaches, our proposal is implemented using
the HTTP protocol and takes into account REST architectural principles. Afterwards, we present a technique to improve
the dynamic composition in security domain extending ReLL to ReLL-S and allowing a machine-client to interact with
secured resources, where security conditions may change dynamically. Finally, we propose SAW-Q, an extension of
Simple Additive Weighting (SAW), as a novel dynamic composition technique that follows the principles of the REST style.
SAW-Q models quality attributes, in terms of response time, availability and throughput, as a function of the actual service
demand instead of the traditional constant values. Our results validate our main hypotheses indicating improvements with
respect to alternative state-of-the-art methods. This also shows that the ideas presented in this thesis represent a relevant
contribution to the state-of-the-art of REST service compositions.

Keywords—SOA, Web Services, Dynamic Compostion, REST, scalable architectures

F

1 INTRODUCTION
Web services are software entities that provide
a determined functionality, they are platform-
independent and can be described, published and
consumed following a defined set of standards such
as WSDL, UDDI and SOAP. These characteristics
emphasize loose coupling between components and
allow designers to develop interoperable, and evolv-
ing applications that can be massively distributed.
Web services also promote the reuse of software,
which reduces development costs, increases main-
tainability, and enables organizations to create com-
posed services by combining basic and other com-
posed services resulting in new software with ag-
gregated value [1].

Service composition is performed statically if it
occurs at design-time or dynamically if it occurs
at runtime. Also, depending on how the composi-
tion is made, it can be manual or automatic. The

• J. Bellido is with the Department of Computer Science, Pontifical
University, Chile.
E-mail: jbellido@uc.cl

Manuscript received April 19, 2005; revised January 11, 2007.

dynamic and automatic service composition is an
active research area due to the benefits of reduced
need for pre-installation and configuration of the
service composition, adaptability to change and con-
texts, high decoupling and personalization, smaller
development time, and reuse [1]. However, static
and manual techniques dominate in the industry due
to the complexity of discovering services dynami-
cally (WSDL descriptions lack domain semantics)
and automatic composition. In addition, virtually
all research on service composition focuses on the
classic Web services (i.e. based on the WSDL,
UDDI and SOAP standards). Currently, emerging
services technology such as REST 1 is becoming an
alternative to conventional services in the industry.

Unlike classical Web services which are
centralized and operation-centric, the REST
architectural style is resource-centric (e.g.
www.puc.cl/course/12) that are manipulated
through a limited set of standard and known
operations (e.g.HTTP. GET, POST, PUT, DELETE).
REST services are popular because they allow

1. Representational State Transfer.

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 2

massive scalability, decoupling, and fault tolerance
(e.g. Amazon API, Facebook API, etc.). REST has
attracted the interest of the scientific community
to serve as a supporting framework for defining
business processes and service composition. A
REST resource should be able to be discovered
by a machine at runtime, and it should be able
to understand the mechanism of interaction with
the resource (e.g. to use GET to read, and to use
DELETE to delete it). This property would make
possible to determine at runtime (dynamically) if
the resource serves the consumer purposes, as well
as to determine the order in which the operations,
that change the resource state, should be invoked.
Thus, it would be possible to generate workflows
that implement B2B processes dynamically and
automatically.

Currently, this is not possible because the REST
resources lack a description that encapsulate domain
semantics and can be interpreted by a machine.
Moreover, current techniques of service composition
are oriented to classic Web services that invoke an
unlimited set of operations, rather than resources
whose state are transformed by invoking a limited
set of operations. The overall objective of this thesis
is to contribute to the state of the art research
on static and dynamic composition of REST ser-
vices through the design and implementation of
a dynamic composition model. In particular, we
propose a RESTful decentralized, stateless compo-
sition model, a QoS model focused on security in
order to determine the feasibility of service com-
position at runtime, and a QoS model focused on
scalability, throughput and response time in order
to dynamically select the best service component
automatically.

2 BACKGROUND

2.1 Service Oriented Architecture

Service orientation has existed for some time and
has been used in various contexts with different
purposes. The most used form of this term has been
to identify approaches that focus on the separation
of concerns, which means that the logic required
to solve a large problem that can be developed
and managed, if such logic is decomposed into a
collection of related pieces, and each piece gives a
solution to a specific part of the problem [2].

This approach transcends technology but when
combined with software architecture, service ori-
entation acquires a technical connotation. Service-
oriented architecture (SOA) is a model in which
an application’s logic is decomposed into several
smaller units that together implement a larger piece
of business logic. SOA promotes that these individ-
ual units exist independently but not isolated from
each other, in fact they could be distributed. This re-
quires that these units operate on the basis of certain
principles that allow them to evolve independently
while maintaining uniformity and standardization
among them. In SOA these logical units are known
as services.

Web services encapsulate business logic and can
provide solutions to problems of various sizes. The
service logic may include the logic provided by
other services, in this case, the service is called a
composed service, and the logic providers are called
component services. A component service may be
responsible for a single or a complex task. Web
services interoperate among them due to a common
understanding provided by services’ descriptions.
The description of a service determines the service
endpoint, the data received and the expected data
returned by the service through message passing. In
this way, programs or services use a description and
a message channel independent from a protocol to
interact and create a loosely coupled relationship.

In summary, SOA services maintain a relation-
ship that minimizes dependencies (loose coupling),
adhere to communication agreements (service con-
tract), independently manage the logic they encap-
sulate (autonomy), hide logic that is not relevant to
a determined context (abstraction), separate respon-
sibilities in order to promote reuse (reusability), can
be coordinated and assembled to form new services
(composability), avoid to retain or store information
specific to an activity (interaction stateless), and are
designed to be described so they can be found and
executed through discovery mechanisms (discover-
ability). The collection of services raises an inven-
tory of services that can be managed independently
[1].

SOA establishes an architectural model that aims
to improve the efficiency, agility and productivity
when developing software. It places services as
first-class entities through which the business logics
are implemented in alignment with service-oriented
computing goals.

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 3

2.2 Web services
According to the context in which they are used,
Web services may assume different roles: providers,
clients and intermediaries. A Web service plays
a provider role if it is invoked from an external
source, and a client role if it invokes a provider
service. Client services look for and evaluate which
is the appropriate service to invoke based on the
provider service description. Intermediary services
are those which play a role of routing and processing
messages sent between client and provider services
until they reach their destination [1].

Traditional Web Services
The platform to implement Web services has been
traditionally defined by a set of industry standards.
This platform is divided into two generations, each
associated with a set of standards and specifications
[1]. The first Web services generation is comprised
of the following technologies and specifications:
Web Service Description Language (WSDL), XML
Schema Definition Language (XSD), Simple Object
Access Protocol (SOAP) and Universal Description
Discovery and Integration (UDDI). These specifi-
cations have been widely adopted in the industry;
however, they lack information about service quality,
which is required to address mission critical func-
tionality at production level. The second generation
adds extensions (WS-* extensions) to fill the gap,
related to service quality, left by the first genera-
tion. The main issues addressed by these extensions
are service security, transactions, reliable messaging
services, among others.

A traditional Web service is comprised of [1]:
• A service contract that is, a WSDL document

describing the service interface (endpoint, op-
erations and parameters) and an XML schema
definition defining data types.

• The program logic. This logic may be im-
plemented by the service itself, or inherited
and wrapped by the service so that the legacy
functionality can be consumed.

• Message processing logic consists of a set of
parsers, processors and service agents. The
runtime environment generally provides this
logic.

• Software components that implement non-
functional requirements defined by the WS-*
standards extension.

REST Services

REpresentational State Transfer (REST) [3], [4] is
an architectural style that underlies the Web. This
approach is another way of implementing a service
that follows the design constraints and requirements
specified by this architectural style. Each constraint
can have positive and negative impact on various
non-functional attributes. The non-functional goals
of REST are: performance, scalability, simplicity,
modifiability, visibility, portability and reliability.
An architecture that lacks or eliminates one of the
REST constraints is usually not considered a REST
architecture.

The REST architectural style constraints are:
• Client-Server: Enforces separation of respon-

sibilities between two components of the ar-
chitecture, the client and the server. This
establishes a distributed architecture where
each component evolves independently. This
restriction requires the server to process the
requests sent by the client.

• Stateless: Determines that the past communi-
cation between the client and the service are
not kept stored on the server-side (service),
that is, the interaction state is not remembered
by the service. This implies that each client
request must contain all the information nec-
essary for the service to process the request
and respond accordingly, without the use of
session information.

• Cache: Services responses may be temporarily
stored in a Web intermediary component (e.g.
routers, gateways, proxies, etc.) and thus avoid
the service to process a similar request again,
diminishing the workload on the service-side.

• Uniform Interface: This constraint states that
the architectural components must share a
single interface to communicate, which is
detailed below.

• Layered System. A REST-based solution can
contain multiple architectural layers. These
layers may be added, modified and rearranged
according to the evolvability need of the so-
lution.

• Code On Demand: This is an optional restric-
tion that allows that some logic is dispatched
from the server to the client, to be executed
on the client-side. It allows to customize Web
applications

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 4

The REST uniform interface is a set of architec-
tural constraints that differentiates REST from any
other style:
• Resources must be uniquely identified (e.g.

through a URI), and the identifiers must be
opaque to prevent coupling, that is, the struc-
ture of a URI shall not include any particular
meaning that can be guessed by a customer.

• Resources’ state must be manipulated through
operations defined by standard (or ad-hoc)
network protocols. For example, for the case
of HTTP, the operations are POST that initial-
ize the state of a resource whose identifier is
unknown and could possibly create a subordi-
nate resource, GET which obtains a represen-
tation including the current state of a resource,
PUT that modifies the state of an existing
resource, DELETE that indicates a request to
eliminate a resource (but could be ignored by
the server). GET, PUT and DELETE opera-
tions are idempotent and reliable. The POST
operation allows an unsafe interaction since
the invocation of this operation may cause
changes to the server [3].

• A resource can support multiple representa-
tions that encode the state of the resource
in a particular format (e.g. XML denoted by
application + xml). The format can be
negotiated through HTTP headers to facilitate
interoperability between client and server.

• The HATEOAS (Hypermedia as the Engine of
Application State) property indicates that the
state transitions modeled in a Web application
(e.g. buy a book, pay the bill, provide the
deliver address, etc.) are served as hyperlinks
that indicate the user the set of actions avail-
able to him or her at a given time (represen-
tation).

2.3 Service Composition
Software integration involves connecting two or
more applications that may or may not be compati-
ble, even when they are not built on the same plat-
form or were not designed to interact with one an-
other. The growing need for reliable data exchange
is one of the strategic objectives of integration. Web
services are inherently designed to be interoperable
and are built with the knowledge that they will have
to interact with a long-range of potential service
consumers.

Web service composition is a technique that coor-
dinates the combination of service components op-
erating within an agnostic business process context.
A composed service is comprised of component ser-
vices that have been assembled in order to provide
the functionality required to automate a task or a
specific business process. These service components
may be part of other compositions. The ability of a
service to be naturally and repeatedly composable
is essential to achieve the strategic goals of service-
oriented computing.

When Web services are composed, the business
logic of the composed service is implemented by
several services, which allows the creation of com-
plex applications by progressively adding compo-
nents.

Service composition is associated with business
processes automation. When a business process
workflow is defined, several decision points are
created in order to define the dataflow and actions
according to variables and conditions evaluated at
runtime. A business process definition can be done
manually if a person defines the sequence of in-
vocations, or automatically if an algorithm defines
such sequence. In addition, service components can
be chosen at design time (static composition) or at
runtime (dynamic composition).

Orchestration and Choreography
In service composition, the coordination of service
components invocation can follow two styles: or-
chestration or choreography. The orchestration is
a centralized control of a business processes exe-
cution; it defines the business logic and the order
of service invocation and execution. Unlike the
orchestration, the choreography has a decentralized
approach; services collaborate and determine its role
in the interaction.

Orchestration is the process by which various
resources can be coordinated to bring out the logic
of a business process. Orchestration technology is
commonly associated with a centralized platform
for activities management [5]. Service orchestration
encapsulates a service business process and other
services invocations. The most widely used tech-
nology in the industry to implement orchestrations
is the Web Service Business Process Execution
Language (WS-BPEL) [6].

REST’s navigational style naturally supports a
workflow style of interaction between components.

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 5

However, interaction is decentralized, components
are loosely coupled and can mutate at any time. This
characteristic, called evolvability, poses a challenge
to service composition since components (resources)
may change unexpectedly. Hence, clients must make
few assumptions about resources and must delay
the binding with the actual resources up to the
invocation-time (dynamic late binding) [7].

REST composition research focuses on orches-
tration, with JOpera [7] being the most mature
framework. In JOpera, control and data flow are
visually modeled while an engine executes the re-
sulting composed service. In [8], control and data
flow is modeled and implemented using a Petri
Net whereas interaction and communication with
the resources themselves is mediated by a service
description called ReLL [9]. In [10], control flow is
specified in SPARQL and invoked services could be
WSDL/SOAP-based endpoints or RESTful services
(i.e., resources); from the orchestrator perspective,
services are described as graph patterns. In [11]
resource’s graph descriptions are publicly available
(can be discovered using HTTP OPTIONS). A set
of constraints regulates when certain controls can
be executed on resources (e.g., a required state),
so that an orchestrator engine could perform a
composition, but no indication is given about how to
express such constraints. The two former approaches
support dynamic late binding and the hypermedia
constraint. An RDF-based approach for describing
RESTful services where descriptions themselves are
hyperlinked is proposed in [12]. The approach is
promising for service discovery at a high level of
abstraction; however, no support for dynamic late
binding is provided and the composition strategy is
not detailed.

Choreographies can be described from a global
and local (one party) perspective. WS-CDL [13]
is a W3C candidate recommendation that describes
global collaboration between participants in terms
of types of roles, relationships, and channels. WS-
CDL defines reactive rules, used by each participant
to compute the state of the choreography and deter-
mine which message exchange will or can happen
next. Stakeholders in a choreography need a global
picture of the service interaction, but none of them
sees all the messages being exchanged even though
such interaction has an impact on related parties
[14].

In [15], REST-based service choreography stan-

dards evolution is presented. Business processes,
modeled as choreographies, are implemented as
single resources at a higher level. The lower level
comprises the resources themselves (process in-
stances). Although the approach provides process
state visibility, it is not clear whether the higher
level corresponds to a centralized orchestration or
to a partial view of choreography.

2.4 REST services composition

Resources and resource collections are the com-
ponents in a RESTful scenario [7], [16]. Unlike
WSDL-based services, REST resources have stan-
dardized, few, and well-known assumptions at the
application level (i.e. the Web) instead of the domain
level. Resources must be identified with a URI
(Universal Resource Identifier) that binds the proper
semantics (at the application level) to the resource
([3] section 6.2.4), and must be manipulated through
links and controls (i.e. an HTML form) embedded
in a resource’s representations (e.g., HTML page).
Representations dynamically determine the set of
resource’s state transitions available to consumers
(Hypermedia as the engine of application state [3]).

Composition requirements that are specific to
REST are dynamic late binding, that is, the URI
of the resource to be consumed can be known only
at runtime; the composed service must also support
the REST uniform interface; data types are known
at runtime; content negotiation must be allowed; and
clients must be able to inspect the composed service
[16], [17].

Currently there are no proposals for automatic
and dynamic composition of REST services. REST
services composition research is mainly focused
on static service composition [16], [17]. The most
comprehensive work in the area is the JOpera project
[18] that aims to provide a similar implementation
of BPEL for REST. JOpera allows the static com-
position of Web services by means of two graphs.
The first, Flow Control Dependency Graph (CFDG)
describes the sequence of invocation of services, and
the second, the Data Transfer Flow Graph (DFTG)
defines the relationship between the data inputs
and outputs when invoking the REST components.
Unlike BPEL, service composition in JOpera al-
lows that the service URI to be invoked is known
at runtime (dynamic late binding), it also suports
the uniform interface, and content negotiation at

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 6

runtime. However, JOpera does not consider the
HATEOAS constraint, and the CFDG is performed
by a centralized process engine, in a stateful fashion
which negatively impacts on service scalability.

Similarly, Bite [19] proposed a BPEL-inspired
composition language describing data and control
flow. Bite partially supports a uniform interface
based on HTTP, dynamic data types, and state in-
spection (only GET and POST). Regarding dynamic
late binding, Bite can generate URIs to created
resources, but cannot inspect the service’s responses
and find out the links provided by the service
(HATEOAS).

Decker [20] presents a formal model for im-
plementing REST processes based on Petri nets,
they uses PNML (Petri Net Markup Language) as a
language for specifying the states, transitions and an
execution engine. Decker considers only partial sup-
port for dynamic late binding since it can generate
URIs for resources created but cannot inspect the
responses and retrieve the embedded links. In this
model, control flow is driven by the decisions of a
human user. Guard conditions, such as autentication
are not supported and like others [21] it assumes
XML as the content type for representations leaving
out REST content negotiation constraint.

Zhao [22] presents an automatic service composi-
tion approach for REST typifying and semantically
describing the services in three categories accord-
ing to the operations that the service can perform
(GET, PUT, POST, DELETE). Service composition
is automated by a first-order logic situation calculus
representing changes and actions. This approach
does not consider several of the REST principles
such as HATEOAS, content negotiation, opaque
URIs, nor dynamic late binding.

2.5 QoS
The quality of service (QoS) is a combination of
several qualities or properties of a service [23].
Dynamic composition of Web services requires the
consumer to choose the best component services
that satisfy the functional and non-functional re-
quirements of the composition. Non-functional re-
quirements involve attributes of quality of service as
response time, availability, security and performance
[23].

The definition and measurement of these at-
tributes of service quality vary by approach. For

example, the response time can be measured as
the average of the results obtained of the last 15
minutes, or an average vector of 15-minute intervals
during the day.

The quality attributes of a service depend on
the load current at which the service is submitted,
however the technical description of these quality
attributes of a service are focused on the description
of a discrete value associated with each property.

QoS in REST
For the case of REST, research initiatives on service
composition are fairly recent, and interest on QoS
properties have focused mainly on security. For
instance, in [24] a RESTful service API is defined to
support service-level agreements based on the WS-
Agreement standard. Agreements (and templates)
are REST resources encoded in the application/xml
media-type, whose life cycle and state is handled
by means of HTTP verbs. Graf et al. present a
server-side authorization framework based on rules
that limit access to the served resources according
to HTTP operations [25]. In [26] a server-side
obligation framework allows designers to extended
existent policies with rules regulating users’ infor-
mation access. Rules may trigger additional trans-
actions (e.g., sending a confirmation e-mail, register
the information access attempt in a log) or even
modify the response content or the communication
protocol (e.g., require HTTPS). Allam [27] aims
to homologate WSDL-based and RESTful services
by considering them black boxes, where interaction
occurs as simple message passing between clients
and servers. Security policies can be placed when re-
ceiving or sending a message as well as locally (e.g.,
at the server or client side). This vision does not
consider complex interaction involving third parties
(e.g., OAuth), or service’s interface heterogeneity
[28], where industry standards are implemented in
various ways. We assume a workflow perspective
where data is transformed locally in successive steps
until the message constraints required by the service
provider are achieved. In addition, clients, servers,
and third party services may engage in an interaction
that implements sub-workflows.

3 REST LIMITATIONS

The REST architectural style offers several advan-
tages when compared to traditional Web services

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 7

in terms of non-functional attributes, namely, low
latency (small response time), massive scalability
(due mainly to statelessness, cacheability, and Web
intermediaries), modifiability, and simplicity, among
others. However, REST considers humans as its
principal consumer and they are expected to drive
service discovery and state transition by under-
standing the representation content. The lack of a
REST machine-readable description forces service
providers to describe their APIs in natural language,
which makes difficult to properly design machine-
clients that can perform discovery and service com-
position in an automated way.

Furthermore, REST has been used in the industry
as an infrastructure layer for supporting massive
service provisioning in the form of Web APIs which
have given rise to the evolution of application
ecosystems that constitutes simple service compo-
sition basically consuming services in a sequential
control-flow pattern. A massively used example of
complex control-flow is the OAuth protocol that
constitutes an orchestration where various parties
cooperate through redirections in order to implement
a workflow. The control-flow patterns involved in
the OAuth are sequence and conditional execution.
Researchers also recognize the lack of a complex
service behavior model in REST as one of the
difficult issues to be addressed in order for REST to
support rich SOA (Issarny, 2009). Research propos-
als for REST service composition focus either on
operation-centric [29], centralized [7], stateful and
static service composition, violating REST architec-
tural constraints.

Traditional Web services dynamic and automatic
composition focuses on diverse techniques (e.g.
planning, graph models, semantic models, QoS con-
straints, etc. in order to make possible the automatic
or dynamic generation of a composition plan (i.e. a
workflow) and the selection of the services com-
ponents [30]. QoS has been a focus of extensive
research and is being recently addressed in REST
but not in its capacity for determining service com-
position on runtime. Furthermore, the very nature of
the non-functional attributes makes it hard to reduce
them to uniform representations such as numbers or
Boolean values. Security for instance requires not
only a complex combination of algorithms but also
protocols (in the case of OAuth a choreography)
in order to determine whether a service can be
composed or not. For the case of response time,

availability and throughput, research in Web sites
provisioning, also known as capacity planning, have
demonstrated the variables such as the user demand
and cache policies are relevant to determine the
quality of a Web site (equivalent to a single REST
service). Hence such quality attributes cannot be
reduced to simple numeric variables as is the case
of traditional QoS-aware compositions in SOA.

4 GENERAL GOALS

The overall objective of this thesis is to facilitate the
dynamic composition of REST services. In particu-
lar, we propose:

1) A decentralized RESTful, stateless composi-
tion model that places an emphasis on service
behavior (control-flow),

2) A QoS model focused on security in order
to determine the feasibility of composition at
runtime, and

3) A QoS model focused on scalability, through-
put and response time in order to select the
service component automatically at runtime.

5 HYPOTHESIS

The main hypothesis of this thesis is related to
the relevance of decentralized service composition,
in that "a stateless and decentralized composition
technique follows the REST architectural style con-
straints and generates a composite service with the
same REST properties whereas a centralized com-
position does not". Second, "QoS-based dynamic
and automatic RESTful service composition must
take into account the characteristics of the non-
functional attributes in order to preserve REST
architectural constraints in the composite service".

6 THESIS WORK AND MAIN CONTRI-
BUTIONS

The first part of this thesis presents a technique
for decentralized, hypermedia-centric and stateless
REST services composition. The proposed tech-
nique models services behavior through a set of
well-known, simple and complex control-flow pat-
terns and focuses on the following REST con-
straints, namely, client-server interaction, layered
client-server, client-stateless-server, and the uniform
interface. The uniform interface (messages between
server and client are self-descriptive) was extended

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 8

through 300 HTTP redirection codes in order to
include control-flow information in the message;
hypermedia (Web linking) is used as the application
state machine. We present the advantages of this
approach (centralized Vs. decentralized) in terms of
response time, availability and throughput, which
are non-functional goals in REST. By definition
a stateful approach is not RESTful so that such
comparison is left out.

The second part of this thesis describes automatic
and dynamic REST services composition based on
non-functional attributes. In this part two QoS do-
mains are analyzed, the first corresponds to security
and the proposal is a hybrid between static and
dynamic service composition in the sense that a
service description (created at design-time) is used
to determine the feasibility of service composition
(at runtime) and actually enforce the composition (at
runtime). The environment is decentralized, stateless
and promotes the use of hypermedia as a state
machine.

The third part of the thesis focuses on a second
QoS domain considering scalability. That is, the
non-functional attributes: response-time, throughput
and availability were used to support automatic
and dynamic service composition. In this case, a
queuing theory-based model was used to identify
response-time, throughput and availability. These
models were later used in a technique called SAW-
Q to identify the compositions with the highest
quality. SAW-Q was compared with a well-known
technique, SAW (from which SAW-Q was derived)
with good results.

Accordingly, the main contributions of this thesis
are:

1) Part 1
a) A decentralized, stateless, hypermedia-

centric technique for designing com-
posed service behavior in REST.

b) A set of control-flow patterns that
implement decentralized, stateless,
hypermedia-centric REST service
composition.

These contributions were published in the
following journal:
J. Bellido, R. Alarcon and C. Pautasso.
Control-Flow Patterns for Decentralized
RESTful Service Composition. ACM Trans-
actions on the Web 8:1 (5:1âĂŞ5:30). ACM

2013.
2) Part 2

a) A centralized, hybrid (design-time and
runtime) and manual REST service
composition based on the security QoS
attribute.

b) A security domain model.
c) An extension to ReLL, a hypermedia

REST service description, that consid-
ers the security domain model in order
to determine the feasibility of consum-
ing a protected service and actually
execute the OAuth choreography:

These contributions were published in the
following journal:
C. Sepulveda, R. Alarcon, and J. Bellido.
QoS aware descriptions for RESTful service
composition: security domain. World Wide
Web 1-28, 2014

3) Part 3
a) A decentralized, dynamic REST ser-

vice composition technique based on
the response-time, throughput and
availability QoS attributes.

b) A queuing theory-based REST model.
c) A response-time, throughput and avail-

ability models based on the proposed
queuing model.

d) SAW-Q, a refinement of SAW, a tech-
nique for scoring service compositions
in terms of various variables such as
response-time, throughput and avail-
ability that is sensible to user demand
and service capacity.

These contributions were submitted to the
following journal:
J. Bellido, R. Alarcon, and C. Pautasso. SAW-
Q: An approach for dynamic composition of
REST services. IEEE Transactions on Ser-
vices Computing, 2014.

Other articles were also produced during this
investigation:
• R. Alarcon, E. Wilde and J.Bellido.

Hypermedia-driven RESTful service
composition. Service-Oriented Computing.
Springer Berlin Heidelberg, 2011. 111- 120.

• J.Bellido, R. Alarcon and C. Sepulveda. Web
Linking-based protocols for guiding RESTful
M2M interaction. Current Trends in Web En-

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 9

gineering (pp. 74-85). Springer Berlin Heidel-
berg, 2012 15

The remainder of this document is organized as
follows: Section 7 presents the journal that sum-
marizes the results of the first part of the thesis.
Section 3 explores the attributes of service quality
in the RESTful services composition, focused on
security. Section 8 presents the dynamic compo-
sition approach based on SAW-Q and scalability
(response-time, throughput, availability). Section 8
presents the main conclusion of this thesis and future
research.

7 CONTROL FLOW PATTERNS FOR DE-
CENTRALIZED RESTFUL SERVICE COM-
POSITION
Describes a technique for decentralized REST ser-
vices composition that takes into account the con-
straints of REST architectural style in the compo-
sition process. The proposed technique involves the
creation of control-flow patterns that allow seamless
interaction between the client and the composite
service and uses hypermedia as a state machine.
The main idea is to implement control-flow patterns
through callbacks and redirections. Finally, we dis-
cuss the impact of our design decisions according
to the architectural principles of REST.

The redirection code (303) was designed to in-
form the user agent it must fetch another resource,
and it is widely used for services to interact with
other services and accomplish business goals. For
example, OAuth and OpenID are popular authoriza-
tion and identity protocols implemented using redi-
rection codes; payment entities which offer online
transactions are also implemented using redirection
codes in order to allow e-commerce applications to
sell products online in a security context under their
control.

Due to constraints on the 303 redirection code,
it cannot support complex interaction successfully.
For instance, parameters should be serialized
in a text format and concatenated to the URI
(application/x-www-form-urlencoded),
and information that cannot be serialized as plain
text cannot be passed between applications in
the URI parameters (e.g., images, pdf documents,
etc). The resulting URI must not exceed the
limit established by the server, otherwise the
server should return a 414 Request-URI

Too Long status code message. In order to
send large quantities of data, the media type
multipart/form-data and the POST method
shall be used for submitting forms that contain
files, non-ASCII data, and binary data. In addition,
only the GET HTTP method can be used to
automatically fetch the redirected URI, but as seen
in our example, applications may be required to
interact with each other using additional methods
without requiring end-user confirmation (e.g., POST
and PUT messages 3 and 10 in Figure??).

More importantly, control flow may be more
complex than sequential invocation of REST re-
sources. Business processes also require parallel or
alternative invocation as well as determining the
conditions for choosing the right response; more
complex control flows consider the invocation of
two services in non established order but only one at
a time (unordered sequence), or service invocation
for a determined number of times iterator.

Finally, notice that the composed REST ser-
vice (PO and /stateN resources) encapsulates the
knowledge about which services to invoke (URI),
which parameters or state information should be sent
and be expected to be received, which methods shall
be used (e.g., GET (7) or POST (12) in Figure ??), as
well as the order of the invocation; that is, they must
know the service interface of the resource, which in
our case is accomplished through ReLL.

7.1 Control flow patterns
In the context of stateless, decentralized composi-
tions of services described with ReLL and with the
assumption that clients can process the Callback
link header, in this section we model control-flow
patterns for RESTful service composition and the
HTTP protocol. The set of patterns includes se-
quence, unordered sequence invocation, alternative,
iteration, parallel, discriminator, and selection [31],
[32].

Sequence, Unordered Sequence
The sequence pattern is a basic control-flow struc-
ture used to define consecutive invocations of ser-
vices which are executed one after the other without
any guard condition associated. As seen in figure ??,
this pattern could be implemented using the 303
redirection code; however, only automatic redirec-
tion of GET messages are allowed by the standard,

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 10

making it difficult to update the composed resource
state (i.e., PUT message of lines 5, 9). In addition,
there is no clear indication on how to handle the
payload of the message. We extend the status codes
with a set of codes identified with a two digit
prefix: 31x. The sequence pattern is implemented
with a new code: 311 (Sequence) indicating the
invocation of a service without any guard condition
(see Figure 1).

User
Agent

<<callback>>
Composed/ <<resource>>

S1/R1
<<resource>>

S2/R2

311 (Sequence)
Link: </S1/r1/>;method="OP2"

Callback: /Composed/state1
payload: state, interface

OP2 /S1/r1
payload 200 (Ok)

statePUT /Composed/state1
aggregated state

311 (Sequence)
Link: </S2/r2>;method="OP3"

Callback: /Composed/state2
payload: state, interfaceOP3 /S2/r2

payload 200 (Ok)
state

S1 S2

PUT /Composed/state2
aggregated state

200 (OK)
Composed service final state

(3)

(7)
(8)
(9)

(2)

(1)

(4)
(5)

(6)

OP1 /Composed/state0

(10)

<<state>>
/state1

<<state>>
/state2

<<state>>
/state0

SEQ

Fig. 1. A sequence control flow pattern imple-
mented for REST and HTTP

The server responds with a 311 message includ-
ing the component resource address (2, 6) in a Link
header as well as the HTTP method in a link target
attribute, and a Callback address in an additional
header indicating the state of the composition. Ad-
ditional information such as state (e.g., a digested
value) and, depending on the service interface, data
formats or URI schemes to create the request, can
be included in the payload. Actual data values for
such templates shall be provided by the user agent
either by requesting them to the user through an
appropriate interface or retrieving them from the
local storage. Such process is out of the scope of
this proposal. The server may close the connection
with the client after issuing a 311 message unless
metadata indicating otherwise is included. When a
user agent receives this code, it must store locally
the callback address and automatically request the
component resource using the indicated method (3,
7). Similarly to Figure ??, if additional communi-
cation shall occur between the component resource
and the user agent it must be modeled as out-of-band
communication and is omitted for readability. When
the response is available, the component replies with

a 200 status code. The composed service shall not
issue another request until the response has been
passed by the user agent through a PUT message
(5), then the composed service can proceed with the
next component (6 to 9).

Descriptors

User
Agent

<<callback>>
Composed

<<resource>>
S1/R1

<<resource>>
S2/R2

311 (Sequence)
Link: </S1/r1>;method="OP2"

Callback: /Composed/state1

GET /S1.rell
200 ok

<<service>>
S1

(3)
(2)
(1)

(4)

(5)
(6)

<<service>>
S2

GET /S2.rell
200 ok

OP1 /Composed/

Fig. 2. ReLL descriptors are fetched consider-
ing the root resource of a service

When all the components have been fetched (i.e.,
the final state of the sequence has been reached), the
response is provided with a 200 status code and
the composed service representation (10). Notice
that the actual HTTP methods to be used when
invoking component services must be determined
by the composed resource. In order to know how
to handle the resources, the composed service pre-
fetches the component services descriptors which
detail the interface of a set of resources at domain-
level; the descriptors are themselves REST resources
(Figure 2). This phase is omitted in the figures
detailing the remaining patterns for readability, al-
though it is assumed it takes place before invoking
a component resource.

S1

S2S1

S2

Fig. 3. Unordered Sequence

For the case of the unordered sequence pattern,
it specifies the execution of two or more services in
any order but not concurrently (Figure 3). That is,
given two services S1 and S2, the services execu-
tion can result as S1 followed by S2 or S2 followed
by S1. Since the list of services to be invoked is
known by the composed resource and the order is
irrelevant, the composed resource (server) has the
information to decide which service to invoke as part
of its own logic. For the user agent, all that matters
is the address of a particular component resource to

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 11

be invoked as well as the method; that is, this case
is not different from a sequential invocation.

Alternative, Exclusive choice
The alternative pattern is a basic control-flow struc-
ture that allows the execution of only one of two
possible services. The service to be executed could
depend on the outcome of preceding service ex-
ecution, values of the parameters, or a user de-
cision. The 312 (Alternative) status code
is proposed for this pattern. When a composed
service requires executing one of two services, it
responds to the client request with a 312 coded
message, indicating the list of services to choose
as Link headers, including the HTTP method as
an attribute, and a Callback header indicating the
connector state to resume interaction. The message
payload is a conditional expression to be evaluated
by the user agent, as well as information required
to build proper request messages (i.e., data formats
or URI schemes).

S1

S2

[Condition]

[else]

User
Agent

<<callback>>
Composed/

<<resource>>
S1/R1

<<resource>>
S2/R2

312 (Alternative)
Link: </S1/r1>;method="OP2",

</S2/r2>;method="OP3"
Callback: /Composed/state1

Condition
payload: state, interface

OP2 /S1/r1
payload 200 (Ok)

state

PUT /Composed/state1
aggregated state 200 (OK)

Composed service final state

(4)

(8)
(9)

(2)

(1)

(5)

(6)
(7)

OP1 /Composed/state0

OP3 /S2/r2
payload 200 (Ok)

state

Eval Condition(3)

<<state>>
/state1

<<state>>
/state0

ALT

Fig. 4. An alternate control flow pattern imple-
mented for REST and HTTP

The composed resource closes the connection
after issuing the response unless otherwise indicated
by additional headers. Link services may differ on
the resources (URIs), or the methods to be used
(Figure 4, message 2). Since in REST user agents
keep application-state information [33], they shall
have enough information to perform the evaluation.
A good practice is to express the condition in
languages well-known to the Web, such as XPath,
although its format escapes the scope of this thesis.
Once the user agent has evaluated the condition it
determines which link to follow (4 or 6). Again,

additional communication may occur between a user
agent and an origin server. Eventually when the
component has a final response, it issues a 200
coded response including its state in the payload (5
or 7). This causes the user-agent to send an update
message (PUT) to the composed resource carrying
on the received payload (8). Once the interaction
finishes, the composed resource replies with a 200
message including the representation of its final state
(9).

Iteration, Structured Loop - while variant
This pattern is an advanced control-flow structure
that allows the execution of a service repeatedly,
the number of times depending on a fixed num-
ber, a time frame, etc. which can be modeled
by a conditional expression. We propose the 313
(Iteration) status code for representing itera-
tions.

LOOP

S1

User
Agent

<<callback>>
Composed/ <<resource>>

S1/R1

313 (Iteration)
Link: </S1/r1>;method="OP2"
Callback: /Composed/state1

Condition
 payload: state, interface

OP2 /S1/r1
payload 200 (Ok)

state

PUT /Composed/state1
aggregated state 200 (OK)

Composed service final state

(4)

(2)

(1)

(5)

(6)
(7)

OP1 /Composed/state0

[Condition]

Eval
Condition(3)

<<state>>
/state1

<<state>>
/state0

Fig. 5. An iterator control flow pattern imple-
mented for REST and HTTP

This interaction begins when the composed re-
source issues a 313 message (Figure 5, message
2) including a Link header with the address of
the component resource, a Callback header in-
dicating the callback connector state address, a
conditional expression, and additional information
to create the message request as part of the payload.
After evaluating the conditional expression (3) and
obtaining positive results, the message is redirected
to the component resource using the indicated op-
eration and payload (4). Communication between
client and server may include several messages
interchanged. When a response is available, the
component resource will issue a 200 message (5).
The condition will then be evaluated again. If it
still holds, the component is invoked again (4);

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 12

or a PUT message is sent to the callback address
carrying along the response content served by the
component service aggregated with previous state
information (6). Finally, at the end of the interaction,
the component replies with a 200 message and the
representation of the composed resource final state
(7).

Parallel Split - Synchronization, Structured Dis-
criminator, Structured Partial Join, Local Syn-
chronization Merge (Selection)
The Parallel Split is a simple pattern that allows
a single thread of execution to be split into two
or more branches invoking services concurrently.
The parallel split pattern can be paired with either
one of four advanced control-flow structures. Under
the paradigm of a composed service - component
services, it is the former which determines whether it
waits for all the responses (Synchronization, Figure
6.a), just one of them (Structured Discriminator,
Figure 6.b), or a fixed number (Structured Partial
Join, Figure 6.c). Finally, for the case of Local Syn-
chronization Merge (also called Selection, Figure
6.d), the composed service shall wait for a number
of responses that cannot be determined with local
information.

<<state>>
/state0

S1

S2

User
Agent

<<resource>>
S1/R1

<<resource>>
S2/R2

317 (Selection)
Link: </S1/r1>;method="OP2",

</S2/r2>;method="OP3"
Callback: /Composed/state1

payload: state, interface
{Condition}

OP2 /S1/r1
payload 200 (Ok)

state

PUT /Composed/state1
aggregated state 200 (OK)

Composed service final state

(3)

(2)
(1)

(4)

(6)
(7)

OP1 /Composed/state0

OP3 /S2/r2
payload 200 (Ok)

state

S1

S2

(8)

S1

S2

n

(a) 314 (Synch) (b) 315 (Discriminator)

(c) 316 (PartialJoin)

(5)

<<state>>
/state1

<<callback>>
Composed/

S1

S2

(d) 317 (Selection)

Eval
Condition

(9)

[Condition]OPT

PAR

Fig. 6. A parallel control flow pattern imple-
mented for REST and HTTP

In order to avoid violating the REST stateless
principle, servers do not store information about

how many answers are expected per client, but make
explicit server’s expectancies through the pattern
status codes, 314 Synch (Synchronization), 315
Discriminate (Structured discriminator), 316
PartialJoin (Structured Partial Join) and 317
Selection (Local Synchronization Merge). The
four patterns follow the same conversational struc-
ture; however, the client’s decision to inform the
server about the availability of a final response is
affected by the corresponding pattern.

Figure 6 shows the details for the pattern. In-
teraction starts when the composed resource issues
either a 314, 315, 316 or 317 message (Figure
6, message 2). The message includes a list of
Link headers annotated with a method attribute, a
Callback header indicating the callback connec-
tor state address, and a payload with instructions to
format input data for the operations according ser-
vice interface. It may also include state information
such as the number of expected service components
to be addressed by the client for the case of the 316
Partial Join pattern.

For the case of a 317 Selection message, a
conditional expression must be included. The condi-
tion must be evaluated considering application-state
information stored locally at the client side (3), and
the result shall be the number of request messages
the client must issue to service components.

Once the user agent determines how many re-
sponses to provide to the composed resource (all,
one, n out of m, or n), it invokes all the service
components indicated in the list with the appropriate
methods concurrently (4, 6). In practice the number
of links to be fetched is limited by the number of
concurrent connections the client is able to maintain
with the servers involved. Again, there may occur
several messages interchanged between clients and
origin servers as an out-of-band conversation, but
once the final response is available, it is aggregated
until the number of responses expected to be sent
to the composed service is reached. The aggregated
state is sent as a 200 coded request (8). The
composed resource processes the aggregated state
(e.g., it could merge the results) and issues a 200
coded response with the final state.

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 13

8 QOS AWARE DESCRIPTIONS FOR
RESTFUL SERVICE COMPOSITION
We explore QoS aware RESTful services compo-
sition, which is characterized by a decentralized,
stateless and hypermedia-driven environment. We
focus particularly on the security domain since
current security practices on the Web illustrate the
differences between both the centralized, function-
based approach and the decentralized, hypermedia
and resource-based approach. We rely on ReLL (a
REST service description) that can be processed
by machine-clients in order to interact with REST-
ful services. Our approach identifies key security
domain elements as an ontology. Elements serve
to model hypermedia-based, decentralized security
descriptions supporting simple and complex interac-
tion such as protocols and callbacks. In this paper,
we propose an extension to ReLL that considers
security constraints (ReLL-S) and allows a machine-
client to interact with secured resources, where
security conditions may change dynamically. A case
study illustrates our approach.

8.1 ReLL-S security description
Compared to traditional services, security is ad-
dressed in a different way on the Web. In
Maleshkova et al. [34] a review of the self-
declared REST Web APIs corresponding to the Pro-
grammableWeb site 2 was analyzed regarding their
support of security mechanisms. The Maleshkova
et al. study analyzes a Web site that is a well-
known repository for services (including WSDL,
REST, XML-based, Web APIs, etc.). They picked
222 services from the RESTful service category
(18%) covering the 51 service categories (e.g.,
search, geolocalization, etc.) available. The security
mechanisms found range from very simple practices
(the majority), to the W3C standards on security on
the Web. For instance, 38% uses API Keys whilst
the OAuth protocol is used by 6% of the reported
service. Notice that mainstream so-called REST ser-
vices (e.g., Facebook, Twitter, Google, etc.) support
and require OAuth authentication. Therefore, we
believe the study is representative from a practical
(and informal) and a theoretical (standards) point of
view. In this section we present ReLL-S descriptions
supporting each of the security mechanisms identi-
fied in the Maleshkova et al. survey.

2. http://www.programmableweb.com

8.2 OAuth
OAuth [35] is an Open Authorization protocol that
allows a third-party application - a client application
- to access resources provided by a service - resource
server - and owned by a user. The user has to
authorize the third-party application to access the
resources stored by the resource server, without
exposing his or her authentication credentials, to
the third-party application. The authorization grant
is represented as a token.

OAuth defines four grant types: authorization
code, implicit, resource owner password credentials,
and client credentials; and provides an extension
mechanism for defining additional grant types. The
protocol flow is flexible and depends on the type of
authorization that is going to be granted. So in the
flow shown in Figure 7, up to four parties could be
involved: the resource owner, the resource server,
the authorization server, and the client. The result
of the protocol is an access token that represents
the authorization granted by the resource owner and
that is sent later by the client to the resource server
to access the restricted resources.

What is interesting about this protocol is that
it involves more than two entities that can com-
municate using a protocol that has been designed
for client-server communication, as it is HTTP, in
a stateless one-to-one conversation. However, this
characteristic presents particular issues to deal with,
which makes it really interesting to describe in more
detail.

Resource

Server
Client Auth

Server

(A)

GET http://[AuthServer]

Payload: Credentials, requestToken, callback

POST http://[AuthServer]]

200 Ok

Payload: access_token

(B)

GET http://[callback]/?authorization_code

Resource

Owner

grant access

Payload: Credentials, authorization_code

(F)

(G)

GET http://[ResourceServerUri]/[resource]

20X Ok

Payload: representation of resource

 302 Redirect [Location]

GET http://[Location]

(D)

(E)

(C)

Fig. 7. Abstract OAuth interaction between four
parties

Once the client has required the access grant, the

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 14

authorization server starts a conversation with the
resource owner that, from the client’s perspective,
occurs completely out of its control. This conversa-
tion’s goal is asking the user to give authorization
to access the resources. It could be implemented
many ways; the authorization server could send an
email to the user, an SMS, or any other kind of con-
versation. In most implementations the conversation
occurs synchronously by redirecting the user-agent
from the client domain to the authorization server
domain. So that, to restore the interaction between
user and client, the authorization server must also
redirect the user-agent to the client. If the user
grants access rights to the client, such redirection
message will contain an authorization grant. This
conversation implements an asynchronous conver-
sation through a callback connector provided by the
client, which becomes the target of the redirection.

Once the client has the authorization grant, it can
use it to retrieve an access token from the server.
The client sends its credentials and the authorization
grant, representing the permissions granted by the
user, to the server. The server verifies the permission
and generates a final token (access token, or oath
token) to be used in future calls, so that the resource
server allows access to restricted resources. It could
have an expiration time and some authorization
servers provide the feature to refresh or renew the
token.

Listing 1. An authorization constraint specifica-
tion (OAuth)
<scope resource="restrictedResources">

<constraint id="oauthAuth"
type="Authorization">

<accessToken>
<query_param name="auth_token"

select="$auth_token||wl:OAuth"/>
</accessToken>

</constraint>
</scope>

<protocol name="wl:OAuth">
<invoke

url="http://www.authserver.com/oauth"
pre="not($auth_code)">

<query_param select="$state"
name="extra"/>

<query_param select="$callback"
name="callback"/>

</invoke>
<invoke

url="http://api.service.com/getToken"
pre="$auth_code">

<query_param select="$auth_code"
name="auth_code"/>

<store selector="token"
persist="auth_token"/>

</invoke>
</protocol>

In this case the client makes two calls to get
authorization to the user’s restricted resources. The
first one could include the callback address and
also a parameter, named state, that must be sent
back by the authorization server when issuing the
callback request to the client. The client can use
the parameter to keep the flow state. The callback
call will include also the authorization code used
by the client to get the final authorization token
during a second call. The order of both calls is
defined by their preconditions (i.e. they play the
roles of guard conditions). That is, when the client
runs the protocol, it will invoke the first call initially
because it doesn’t have the auth_code stored
locally. Once the request is issued, the client blocks
itself waiting for an answer. When the callback
arrives, the client is restarted and since its current
condition has changed (i.e., it has the code) then it
will make the second call (the condition is met) to
finally resolve the authorization constraint.

9 SAW-Q: AN APPROACH FOR DY-
NAMIC COMPOSITION OF REST SER-
VICES

SAW-Q: An approach for dynamic composition of
REST services: We propose SAW-Q an extension
of SAW, as a technique of dynamic composition
according to the principles of the REST style and
considering quality attributes modeled as a demand
function instead of the traditional constant values.
Our model is much more accurate when compared to
real implementation, positively improving dynamic
composition.

9.1 Modeling REST QoS service using
Queue Models
There are multiple ways to measure the performance
of a service. The most common metrics are response
time, availability and throughput. A service response
time is the time interval from the request arrival
to the server until the response is received by the

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 15

client and is determined by two factors: the network
latency and bandwidth and the service capacity. The
way a REST service processes requests and replies
can be modeled using queuing theory. The client
requests follow the Poisson distribution [36], [37]
and are randomly distributed over a period of time.
The generalized queuing model considers the long-
term behavior of the queue or steady state, reached
after the system has been running for a sufficiently
long period of time.

Performance measures of a queue are based on
the probability that a certain number of requests may
exist in a system at a given time (pn). For instance,
p0 would represent the probability of a minimal
waiting time due to an empty queue (0). More
in detail, useful performance measures are[37]: the
expected amount of requests in the system (Ls),
which includes the expected number of requests
from customers in the queue (Lq), the waiting time
of a request to be processed by the service (Ws) and
the waiting time of the request in the queue (Wq).

Some specializations of the generalized queue
system that calculates performance measures have
been proposed and proved. The specialized queue
model corresponding to a REST service is
M/M/C : GD/N/INF , where N ≥ C as
described before. The corresponding performance
measure formulas originally defined in [37] are
described below.

Given the estimated rate of requests (λ) that arrive
at the system (S), the rate of denied request depends
on the rate of arrival at a given time (Formula 1).
The higher the arrival, the higher the probability of
denied requests.

λlost = λ · pN (1)

The effective rate of arrival is the difference be-
tween the arrived requests minus the denied requests
(Formula 2)

λeff = λ− λlost = (1− pN) · λ (2)

The rate between arrival (λ) and processed re-
quests rate of the system (µ) is defined by ρ = λ/µ.
It is possible to calculate the expected number of
requests waiting in the queue Lq(s) using Formula
3 [37] , and the expected number of requests in the
Ls(s) system using Formula 4.

Lq(s) =
ρc+1

(c− 1)!(c− ρ)2

{
1−

(ρ
c

)N−c+1

− (N − c+ 1)
(
1− ρ

c

)(ρ
c

)N−c}
p0

(3)

Ls(s) = Lq(S) + ρ (4)

The processing time for a REST service is defined
as a rate between the number of processed request
and the effective arrival rate of requests (Formula
5).

Ws(s) =
Ls(s)

λeff
(5)

The waiting time in the waiting queue for a
request in a REST system is defined as a rate
between the number of requests waiting in the queue
and the effective arrival rate of requests (Formula 6).

Wq(s) =
Lq(s)

λeff
(6)

The average service response time
QResponseT ime(s) is calculated as the sum of
the processing time of the services (Ws) and
the waiting time in the queue of requests (Wq),
as seen in Formula 7. We are not considering
network latency since this is out of the scope of
responsibility and control of the service.

QResponseT ime(s) = Ws(s)+Wq(s) =
Lq(s)

λeff
+
Ls(s)

λeff
(7)

Replacing the factors in the formula in order to
reflect the clients demand dependency, we obtain the
following Formula 8.

QResponseT ime(s) =
Lq(s)

(1− pN)λ
+

Ls(s)

(1− pN)λ
(8)

Service processing capacity is defined as the
number of requests that a system (the whole number
of service replicas) can process at a given time.
The service availability QAvailability(s) is usually
measured as the percentage of time that the service
is ready to be consumed at a period of time [37].
However, the availability of a service depends on the
number of customers attempting to access a service.
If the number of requests (n) exceeds the capacity
of the service (C ≤ n < N), the availability is
downgraded because many request try to access
and compete for the service resources, hence the

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 16

probability of being served is reduced. Otherwise,
if the number of requests (n) falls below the service
capacity (0 ≤ n < C), the availability of the
service grows. Service availability is calculated as
the probability that n requests exist in the system
(pn). Service availability is calculated using Formula
9.

QAvailability(S) =

ρn

n!
p0, 0 ≤ n < c

ρn

c!cn−cp0, c ≤ n < N
(9)

The service throughput QThroughput(s) is the num-
ber of requests that the service can process in a
unit of time (i.e. seconds). If QResponseT ime is the
function to calculate the time that takes a request
to be processed by the service, then the quantity
of requests that can be processed by the service in
one second is calculated as the inverse function of
QResponseT ime, as seen in Formula 10 .

QThroughput(S) =
(1− pN)λ

Lq(S) + Ls(S)
(10)

9.2 Applying the Queue Model in a real sce-
nario
We implemented a REST service as a Python script
running on a Apache Web server. The experiment
was performed locally, in order to discard the effect
of network latency, on an Intel PC with 4GB RAM,
and 4 cores. We also modeled response time, avail-
ability and throughput using the equations proposed
in section 3.4. The implemented service is charac-
terized as Ws = (1, 20, 50) where each instance is
able to process one request per second, the service
is replicated 20 times and there may be up to 50
requests in the system at a given time. The response
time was calculated using the proposed formulas
and we obtained the experimental results from the
stress tests using Apache JMeter, the tests were run
10 times automatically and averaged, in order to
eliminate external factors. For each scenario, results
between the models and the experiments are very
similar, for the case of response time the results
show that when the number of requests exceeds the
processing capacity of the service, the response time
increases until the requests are denied (Figure 8(a));
service availability decreases exponentially (Figure
8(b)), and throughput remains constant once the
service reaches the maximum capacity (Figure 8(c)).

1000 10 20 30 40 50 60 70 80 90

3

0

0,5

1

1,5

2

2,5

Workload (req/s)

Re
sp

on
se

 T
im

e
(s

)

(a) Response Time

1000 10 20 30 40 50 60 70 80 90

1,1

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Workload (req/s)

Av
ai

la
bi

lit
y

(%
)

(b) Availability

1000 10 20 30 40 50 60 70 80 90

21

0
2
4
6
8

10
12
14
16
18

Workload (req/s)

Th
ro

ug
hp

ut
 (r

eq
/s

)
(c) Throughput

Fig. 8. Comparison between estimated (con-
tinuous line), using the proposed formulas, and
actual (shown as dots) behavior of a service in
different scenarios. (a) The average response
time of a service increases when the workload
exceeds the capacity of the service (20 req/s);
(b) service availability is reduced when the ser-
vice is unable to process more requests (20
req/s); (c) and service throughput grows accord-
ing to the workload until reaches its maximum
capacity (20 req/s).

9.3 Dynamic Composition based in QoS us-
ing Queue Model

In order to compose a service dynamically and
based on the quality attributes, we need to select
the service components as late as possible (dynamic
late binding) and at runtime. In this paper we
propose a strategy of hybrid dynamic composition
that combines the techniques of workflow driven
composition and declarative composition. Compo-
sition techniques guided by a workflow define an
abstract process model for the composed service and

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 17

later each activity of the model is bound to a par-
ticular service. Declarative composition techniques,
on the other hand, use customer-defined rules and
constraints to determine if the resulting composite
service meets customer expectations. In this case,
service selection will depend on the fulfillment of
each user-defined condition. Quality attributes of
the resulting concrete service composition can be
evaluated using a utility function using global and
local optimization techniques [38].

On the other hand, the workflow can be seen
as an arrangement of control-flow operators (e.g.
sequence, conditional, parallel, etc.) that impact the
utility function defined in a declarative technique.
For example, the response time of a composed
service that includes the sequential invocation of
service components, results in the sum of the re-
sponse time of the service components. If the service
invocation happens in parallel, the response time
of the composed service is the maximum value of
the response time of the invoked services. When
the invocation occurs within a loop, the composed
service response time is the product of service
component response time and the times that it is
invoked. For the case of the conditional control-flow
pattern, the response time of the composed service,
in the worst case, is the maximum response time
of the components to be chosen by the alternative
condition. In [38], the influence of control-flow op-
erators in the quality attributes of composed services
are defined as aggregation functions.

A typical example of service composition is the
Travel Planner. In this composite service, the search
of places for entertainment (Attraction search) is
performed in parallel with the reservation service
and an airline reservation service of a hotel. Then,
the distance between the place of entertainment
and the hotel is calculated and depending on the
outcome, a car rental or a bike rental service may
be chosen. The abstract process of this composite
service can be seen in Figure 9.

According to the algebra of service composition
[39], the Travel Planner service is defined by
Wtp = {(AttractionSearch‖(TicketBooking �
Hotelbooking)) � DriveT imeCalculation �
(BikeRental � CarRental)}. In the notation,
control-flow dependencies are denoted by symbols,
for instance ‖ defines parallel invocation, � defines
sequential invocation, and � defines a conditional
invocation. Each task of an abstract process can be

implemented using one of many existing services,
which results in a composite service that should
meet the user expectations. The number of possible
ways for composing this Travel Planner service
depends on the number of service candidates for
each task. That is, if each task in the abstract
process has two service candidates, then there
are 26 different ways to implement the composite
service. The objective of dynamic composition is
to find the combination that gives the user the
greatest benefits. In the remainder of this section we
introduce SAW, which proposes a utility function
that identifies the best combination according to
multiple criteria.

Ticket
Booking

Attraction
Search

Driving Time
Calculation

Hotel
Booking

Bike
Rental

Car
Rental

Fig. 9. Abstract BPMN model of the composite
service travel planner

Simple Additive Weighting (SAW)
One way to assign a score to each possible ser-
vice combination is by using the Simple Additive
Weighting (SAW) utility function defined by For-
mula 13 [40]. The SAW technique consists of a
process of assigning scores to each combination
through two phases: scaling and aggregation or
weighting. At the stage of scaling the values of the
quality attributes of the candidate services are nor-
malized between 0 and 1 by a comparison between
the maximum and minimum values. Then, during
the aggregation phase the following formulas are
used to calculate the score of a composite service.

To define a particular composed service, we con-
sider an abstract model CSabstract = S1, S2, ..., Sn,
restricted by customer defined constraints
QoSconstraints = C1, C2, ..., Cm. The process
that assigns a score for each combination of
services CSx = s1, s2, ..., sn of the abstract
model works as follows: the quality attributes of
each candidate service s is represented by the
feature vector q(s) = q1, q2, ..., qk, therefore qk(s)
represents the k-quality attribute value for service s.
Thus, Qmin(j, k) and Qmax(j, k) defined in Formula
11 represent the minimum and maximum value of
the k quality attribute for the service candidates to
implement a service Sj task.

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 18

Qmin(j, k) = min
∀s∈Sj

qk(s)

Qmax(j, k) = max
∀s∈Sj

qk(s)
(11)

Then Q′min(k) and Q′max(k) defined in Formula
12 calculate the minimum and maximum value of
the k quality attribute for the abstract model using
the aggregation functions F , defined in Table ?? for
each operator of the model.

Q′min(k) = Fk
n
j=1(Qmin(j, k))

Q′max(k) = Fk
n
j=1(Qmax(j, k))

(12)

Finally, the utility function assigns a score to the
composite service CSx, calculated by Formula 13
where the scores obtained for each quality attribute
k, are weighted by the user preferences W =
(w1, w2, . . . , wk)

U ′(CSx) =
r∑

k=1

(
Q′max(k)− q′k(CSx)
Q′max(k)−Q′min(k)

· wk) (13)

Simple Additive Weighting using Queue Model
(SAW-Q)

Since dynamic composition aims to find the best
service for each task at runtime, the time required
to meet this objective has an important role. It
is for this reason that techniques such as integer
programming, dynamic programming, heuristic and
distributed processing are mainly used in order to
reduce the time service selection. However, most
techniques ignore service demand while evaluating
quality scores, which causes that the resulting com-
position may not be the most useful in practice.
Hence, we modify the SAW technique to take into
account the expected customer demand.

Unlike the previous model, in this model each
service candidate s is defined by the vector of qual-
ity attributes q(s, λ) = qrt(s, λ), qav(s, λ), qth(s, λ).
That is, by modeling REST services as a queuing
system, we can calculate the quality attributes of a
service according to the expected customer demand
for the composite service (λ), using the formulas 8,
9 and 10 (Section 9.1). Hence, the SAW formulas
presented before are modified introducing the user
demand:

Qmin(j, k, λ) = min
∀s∈Sj

qk(s, λ)

Qmax(j, k, λ) = max
∀s∈Sj

qk(s, λ)
(14)

Q′min(k, λ) = Fk
n
j=1(Qmin(j, k, λ))

Q′max(k, λ) = Fk
n
j=1(Qmax(j, k, λ))

(15)

The proposed utility function including clients’
demand, SAW-Q, is defined by Formula 16:

U ′(CS, λ) =
r∑

k=1

Q′max(k, λ)− q′k(CS, λ)
Q′max(k, λ)−Q′min(k, λ)

· wk

(16)
The component services are selected according to

the values obtained from SAW-Q for each abstract
workflow. There are four factors that determine such
value: the number of tasks the abstract model of
the composite service; the number of candidates of
the composite service services; quality constraints
defined by the customer; and the control-flow pat-
terns used in the abstract model. The control-flow
patterns determine the execution path of a composite
service. Depending on this, the component services
can be invoked in sequence, in parallel, iteratively,
or following alternative conditional execution paths.
The quality attributes of a composite service are
determined by the aggregate functions in Table
??. The utility value ranks an implementation (of
all possible) by calculating the expected behavior
for each quality constraint. Therefore, since each
control-flow pattern influences the utility function
in various ways, the number and variety of control-
flow patterns of an abstract model influence the
choice of the best implementation and the best
service for each task. As implementation options
grow, the utility function becomes more important
in the decision process to choose the best service
for a task component.

9.4 Implementation and Evaluation
Implementation
Our principal hypothesis is that a dynamic com-
position approach based on quality restrictions that
does not considers the user demand leads to im-
plementations that can be erroneous in practice. In
this section, we describe the implementation of a
REST service composer based on SAW-Q, which is

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 19

$_Request Receiver

WS Data

QoS API

Optimizer

Queue Model

WS Composer Service

App Service

WS Data

App Logic

WS Orchestrator

Ochestration
Engine

Invocation
Handler

Control flow
handler

(redirect)

Client

Fig. 10. Prototype architecture for dynamic
composition using SAW-Q

a prototype that allows us to illustrate our results
experimentally.

Figure 10 describes the prototype architecture.
The module Receiver accepts the arriving requests
($_Request); it is responsible for recording ser-
vice access and delivering the message to the next
component. The App Logic module handles the
request and determines its purpose in order to create
a new instance of an existing composed service
(e.g. POST) or to update the status of an existing
one (e.g. PUT). When a new instance is requested,
the WS Composer Service module determines the
service components for the abstract process (CSx).
It accomplishes this task by invoking the Opti-
mizer component which runs either SAW or SAW-
Q in order to determine the utility values for the
combination of service candidates. The Optimizer
uses the Queue model library to perform equations
8, 9, and 10 (Section 9.1). The WS Composer
Service defines the service invocation plan to follow.
On the other hand, if the application intends to
update the status of an existing composed service,
then the request is derived to the WS Orchestrator
module (Orchestrator Engine) that is responsible for
executing the composition plan.

The Orchestrator Engine chooses at runtime the
next service candidate with the highest score accord-
ing the utility function determined by the WS Com-
poser (Invocation Handles), and finally the Control-
flow Handler executes the composition plan (i.e.
prepares the HTTP request messages to be sent).

Control-flow patterns were implemented consid-
ering REST architectural constraints as proposed
in [41]. Hence, we use redirections in order to

keep application state on the client. The Control-
flow Handler module extends the service response
with header metadata corresponding to control-flow
patterns as defined. This allows us to implement
service compositions that are fully decentralized and
stateless.

Services were implemented similarly to those
of section 3.5, that is, as Python scripts (Django)
running on an Apache Web server with PostgreSQL
persistence. The experiment was performed online,
the client run on an Intel PC with 4GB RAM,
and 4 cores, the server (Ubuntu) runs on a virtual
machine with 4 cores, 3GB RAM. Each service
candidate was replicated up to 10 times in a LAN
configuration.

Evaluation

In order to validate the obtained results empirically,
we implemented both techniques SAW and SAW-
Q to choose at runtime the best service candidates
using the previously described prototype. Services
workload (requests/second) analysis was performed
using the load-testing tool JMeter, for a time long
enough to obtain stable results. The results obtained
in this experiment confirms that SAW-Q’s rankings
fit better the experimental results.

Our experimental scenario comprehends a dataset
of 6 tasks corresponding to the abstract BPMN
model shown in Figure 9. For each task in the busi-
ness process we implemented 2 alternative services,
that is, we implemented 12 services which were
characterized with a random arrival rate between
4 to 10 requests per second, with random replicas
(between 1 to 5) and a random capacity for each
replica of 10 to 40 services in the waiting queue.

The response time is a quality attribute that neg-
atively affects the quality of service when it grows.
In this experiment the average response time for
a service following SAW is higher than the one
obtained using SAW-Q when the user demand is
taken into account. Figure 13 shows the impact of
changes in the demand from 1 to 19 requests per
second on SAW and SAW-Q. For each value of the
demand, we considered the average response time
of the composed service with the highest score for
SAW and SAW-Q (Figure 11(a)). The differences
between both techniques can be appreciated when
the demand scales up to 8 requests per second, from
then, the services with the highest score according to

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 20

200 2 4 6 8 10 12 14 16 18

7000

0

1000

2000

3000

4000

5000

6000

Workload (request/s)

Re
sp

on
se

 T
im

e
(m

s)

SAW

SAW-Q

(a) Response Time
according SAW and
SAW-Q

200 2 4 6 8 10 12 14 16 18

110

0

10

20

30

40

50

60

70

80

90

100

Workload (request/s)

Av
ai

la
bi

lit
y

(%
)

SAW-Q

SAW

(b) Availability accord-
ing SAW and SAW-Q

200 2 4 6 8 10 12 14 16 18

550

0

50

100

150

200

250

300

350

400

450

500

Workload (request/s)

Th
ro

ug
hp

ut
 (r

eq
/m

in
)

SAW-Q

SAW

(c) Throughput accord-
ing SAW and SAW-Q

Fig. 11. SAW/SAW-Q comparison.

SAW obtains a higher response time when compared
to the top score services obtained by SAW-Q, hence
quality of the services selected by SAW is worst than
those services selected by SAW-Q.Figure 11(b) and
Figure 11(c) shows the impact of SAW and SAW-
Q selections on the availability and throughput of
the services with highest score. Again the difference
between both techniques appears since the workload
is 9 requests per second.

In Figure 12 we go further analyzing the situation
when the demand reaches 8 requests per second.
(λ = 8req/s). The dots represent the obtained re-
sults and the continuous line, the average. Note that
in the composition proposed by SAW the standard
deviation is bigger than the composition using SAW-
Q.

The availability of the services composed using
SAW-Q, on average, is greater than the compositions
obtained using SAW. Figure 13 shows the availabil-
ity of both services when the demand is 8req/s. The
dots are the obtained results an the continuous line
shows, the measures average.

Composite service throughput using SAW-Q is
slightly higher than the one using SAW which means
that the SAW-Q composite service has the capacity
to serve more requests per minute than the SAW
composite service. Figure 14 shows the results of

120.0000 20.000 40.000 60.000 80.000 100.000

1200

400

500

600

700

800

900

1000

1100

Time (ms)

Re
sp

on
se

 T
im

e
(m

s)

(a) Response Time SAW

120.0000 20.000 40.000 60.000 80.000 100.000

1200

400

500

600

700

800

900

1000

1100

Time (ms)

Re
sp

on
se

 T
im

e
(m

s)

(b) Response Time SAW-Q

Fig. 12. SAW/SAW-Q comparison: Composed
service response time.

120.0000 20.000 40.000 60.000 80.000 100.000

100

60

65

70

75

80

85

90

95

Time (ms)

Av
ai

la
bi

lit
y

(%
)

(a) Availability SAW

120.0000 20.000 40.000 60.000 80.000 100.000

100

60

65

70

75

80

85

90

95

Time (ms)

Av
ai

la
bi

lit
y

(%
)

Label

(b) Availability SAW-Q

Fig. 13. Availability comparison between both
techniques of composition.

both services when the demand is 8 requests per

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 21

second. Again, the dots are the obtained results and
the continuous line shows the average.

120.0000 20.000 40.000 60.000 80.000 100.000

500

0

50

100

150

200

250

300

350

400

450

Time (ms)

Th
ou

gh
pu

t (
re

qu
es

t/
m

in
)

(a) Throughput SAW

120.0000 20.000 40.000 60.000 80.000 100.000

500

0

50

100

150

200

250

300

350

400

450

Time (ms)

Th
ro

ug
hp

ut
 (r

eq
ue

st
/m

in
)

(b) Throughput SAW-Q

Fig. 14. Throughput comparison between SAW
and SAW-Q.

10 CONCLUSIONS

10.1 Regarding Decentralized, stateless,
complex service behavior in REST
In Section 7 a proposal for the design and imple-
mentation of complex composed service behavior is
presented. This proposal places emphasis on REST
architectural constraints, having as goal to achieve
scalability and statelessness for the composed ser-
vice behavior. With these considerations in mind,
a set of well-known control-flow patterns that are
used to implement simple and complex behavior in
traditional Web services were recreated.

The main conclusion from the experience is
that a decentralized, stateless implementation of a
composed service satisfies REST architectural con-
straints and provides significant improvements re-
garding throughput and availability, which are non-
functional goals of REST.

Second, when following REST architectural con-
straints and a decentralized, stateless approach
where the client (User Agent) shares the interaction

responsibility with the server, control-flow patterns
design in REST differ from those in SOA where
state (information interaction) is kept in a central-
ized component (the orchestrator).

Third, one of the extensibility mechanisms of
HTTP, namely status codes, was used to implement
the presented approach. Other alternatives could be
used, such as link headers, or ad-hoc media types
(e.g. a specialized JSON document). However, the
precedence for link processing indicates that such
messages must be processed after the representation
is fully received and processed by the client and after
users have performed the actions they required (e.g.
click on buttons, or run javascript controls), which
introduces not only delays but also security risks.

Finally, the presented approach requires that the
client knows in advance how to process the mes-
sages, so that, it shall be a process-oriented User
Agent. In addition, this design choice also includes
the typical vulnerabilities of nowadays User Agents.
Additional measures such as digital signatures must
be included in order to guarantee a safe interaction
between services (mediated by the User Agent).

10.2 Regarding hybrid (static and dynamic)
service composition in REST
In Section 8 a technique that exploits hypermedia-
centric REST service descriptions (defined at design
time) is used at runtime to determine the feasibil-
ity of service composition and actually enacting a
composition with an authentication service based on
OAuth. Again a decentralized approach, a choreog-
raphy, was followed.

The main conclusion from this approach is that
hypermedia-centric REST service descriptions can
actually serve as a basis for a well-behaved User
Agent traverses complex paths on the Web of ser-
vices. However, since such descriptions are created
at design-time, dynamic changes on the service pro-
vision (e.g. changes on the service interface) could
not be reflected on the descriptions. Descriptions
that are out of sync with the service implementations
may impede the User Agent to continue its work,
although a good service description can provide in-
formation to the client developer so that the changes
can be easily noticed.

Second, a QoS domain (security) is addressed
in this section not only because an important au-
thorization technique (OAuth) is an example of a

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 22

highly scalable and well-known choreography, but
also because QoS-aware service composition is a
field that have been extensible studied in order to
support automatic and dynamic service composition.
QoS attributes, particularly security are playing a
major role in the current Web due to the massive
scale, performance, availability and evolvability re-
quirements that pervade modern Web applications.
However, most techniques reduce QoS complexity
to single values (e.g. booleans or numbers) when in
practice some, such as security, shall be represented
as a combination of diverse algorithms and protocols
that could be available or not, or even worst shall be
tried to follow in order to discover the feasibility of
choosing a service as a component for a composed
service.

10.3 Regarding dynamic service composi-
tion in REST
In Section 9, SAW-Q (an extension of SAW) is
proposed as a novel dynamic composition technique
that follows the principles of the REST style. SAW-
Q models quality attributes as a function of the
actual service demand instead of the traditional
constant values.

The main conclusion is obtained when comparing
both techniques SAW-Q is much more accurate
than SAW when compared to real implementations,
positively improving the quality of dynamic service
compositions. Quality attributes of a REST service
such as, availability, response time and throughput
can be modeled with better accuracy using queuing
theory since it considers implementation details that
are particularly relevant for service architecture,
such as the processing time of the application,
the number of times the service is replicated, the
maximum number of clients that can be handled by
each service replica at a given time and the request
that remain in the waiting queue.

Second, choosing the right candidate service in
dynamic composition is a critical task. Different
ways of measuring the quality of a service can
lead to errors. The dynamic composition technique
proposed, SAW-Q, considers the attributes of service
quality as a function of the demand for requests thus
obtained composed services that behave better than
those determined by SAW.

Finally, the present approach contributes a deeper
analysis on the scalability related attributes. Con-
sidering the request demand or workload when

modeling services and composed services is crit-
ical particularly to certain quality attributes such
as throughput, response time, and availability but
also fault tolerance and even price, which are not
considered in our study.

REFERENCES

[1] T. Erl, Soa: principles of service design. Prentice Hall Upper
Saddle River, 2008, vol. 1.

[2] ——, Service-oriented architecture: concepts, technology, and
design. Pearson Education India, 2005.

[3] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation,
University of California, Irvine, 2000. [Online]. Available:
http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm

[4] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian, SOA
with REST: Principles, Patterns &Constraints for Building
Enterprise Solutions with REST, 1st ed. Upper Saddle River,
NJ, USA: Prentice Hall Press, 2012.

[5] J. Mendling and M. Hafner, “From ws-cdl choreography to
bpel process orchestration,” Journal of Enterprise Information
Management, vol. 21, no. 5, pp. 525–542, 2008. [Online].
Available: http://dx.doi.org/10.1108/17410390810904274"

[6] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary,
C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland et al.,
“Web services business process execution language version
2.0,” OASIS standard, vol. 11, p. 11, 2007.

[7] C. Pautasso, “Composing restful services with jopera,” in
Software Composition, ser. Lecture Notes in Computer Science,
A. Bergel and J. Fabry, Eds. Springer Berlin Heidelberg, 2009,
vol. 5634, pp. 142–159.

[8] R. Alarcón, E. Wilde, and J. Bellido, “Hypermedia-driven
restful service composition,” in 6th Workshop on Engineering
Service-Oriented Applications (WESOA 2010). Springer, 2010.

[9] R. Alarcon and E. Wilde, “Linking data from restful services,”
in Third Workshop on Linked Data on the Web, Raleigh, North
Carolina (April 2010), 2010.

[10] R. Krummenacher, B. Norton, and A. Marte, “Towards linked
open services and processes,” in Future Internet - FIS 2010,
ser. Lecture Notes in Computer Science, A. Berre, A. GÃşmez-
PÃl’rez, K. Tutschku, and D. Fensel, Eds. Springer Berlin
Heidelberg, 2010, vol. 6369, pp. 68–77.

[11] S. Stadtmüller and A. Harth, “Towards data-driven program-
ming for restful linked data,” in Workshop on Programming
the Semantic Web (ISWCâĂŹ12), 2012.

[12] R. Verborgh, T. Steiner, D. Deursen, R. Van de Walle, and
J. Valles, “Efficient runtime service discovery and consumption
with hyperlinked restdesc,” in Next Generation Web Services
Practices (NWeSP), 2011 7th International Conference on, oct.
2011, pp. 373 –379.

[13] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon,
and C. Barreto, “Web services choreography description lan-
guage version 1.0,” W3C candidate recommendation, vol. 9,
2005.

[14] G. Decker, “Process choreographies in service-oriented envi-
ronments,” Ph.D. dissertation, Masters thesis, Hasso Plattner
Institute at University of Potsdam, 2006.

I CONCURSO LATINOAMERICANO DE TESIS DE DOCTORADO, OCTUBRE 2015 23

[15] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson,
“Developing web services choreography standardsâĂŤthe
case of {REST} vs. {SOAP},” Decision Support
Systems, vol. 40, no. 1, pp. 9 – 29, 2005, web
services and process management. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167923604000612

[16] C. Pautasso, “Restful web service composition with
bpel for rest,” Data Knowl. Eng., vol. 68, no. 9,
pp. 851–866, September 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1550965.1551240

[17] O. Nierstrasz and T. D. Meijler, “Requirements for a composi-
tion language,” Lecture Notes in Computer Science, vol. 924,
pp. 147–161, 1995.

[18] C. Pautasso and G. Alonso, “The {JOpera} visual
composition language,” Journal of Visual Languages
and Computing, vol. 16, no. 1âĂŞ2, pp. 119 – 152,
2005, 2003 {IEEE} Symposium on Human Centric
Computing Languages and Environments. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1045926X04000400

[19] F. Rosenberg, F. Curbera, M. Duftler, and R. Khalaf, “Compos-
ing restful services and collaborative workflows: A lightweight
approach,” Internet Computing, IEEE, vol. 12, no. 5, pp. 24–
31, Sept 2008.

[20] G. Decker, A. Lüders, H. Overdick, K. Schlichting, and
M. Weske, “Restful petri net execution,” in WS-FM, 2008, pp.
73–87.

[21] X. Xu, L. Zhu, Y. Liu, and M. Staples, “Resource-oriented
architecture for business processes,” in Software Engineering
Conference, 2008. APSEC ’08. 15th Asia-Pacific, Dec 2008,
pp. 395–402.

[22] H. Zhao and P. Doshi, “Towards automated restful web ser-
vice composition,” in Web Services, 2009. ICWS 2009. IEEE
International Conference on, July 2009, pp. 189–196.

[23] D. Menasce, “Qos issues in web services,” Internet Computing,
IEEE, vol. 6, no. 6, pp. 72 – 75, nov/dec 2002.

[24] R. Kübert, G. Katsaros, and T. Wang, “A restful
implementation of the ws-agreement specification,” in
Proceedings of the Second International Workshop on
RESTful Design, ser. WS-REST ’11. New York, NY,
USA: ACM, 2011, pp. 67–72. [Online]. Available:
http://doi.acm.org/10.1145/1967428.1967444

[25] S. Graf, V. Zholudev, L. Lewandowski, and M. Waldvogel,
“Hecate, managing authorization with restful xml,” in
Proceedings of the Second International Workshop on
RESTful Design, ser. WS-REST ’11. New York, NY,
USA: ACM, 2011, pp. 51–58. [Online]. Available:
http://doi.acm.org/10.1145/1967428.1967442

[26] J. P. Field, S. G. Graham, and T. Maguire, “A
framework for obligation fulfillment in rest services,”
in Proceedings of the Second International Workshop
on RESTful Design, ser. WS-REST ’11. New York,
NY, USA: ACM, 2011, pp. 59–66. [Online]. Available:
http://doi.acm.org/10.1145/1967428.1967443

[27] D. Allam, “A unified formal model for service oriented
architecture to enforce security contracts,” in Proceedings of
the 11th Annual International Conference on Aspect-oriented
Software Development Companion, ser. AOSD Companion
’12. New York, NY, USA: ACM, 2012, pp. 9–10. [Online].
Available: http://doi.acm.org/10.1145/2162110.2162120

[28] J. Hongbin, Z. Fengyu, and X. Tao, “Security policy
configuration analysis for web services on heterogeneous
platforms,” Physics Procedia, vol. 24, Part B, no. 0, pp.

1422 – 1430, 2012, international Conference on Applied
Physics and Industrial Engineering 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1875389212002544

[29] F. Rosenberg, F. Curbera, M. J. Duftler, and R. Khalaf,
“Composing RESTful services and collaborative workflows:
A lightweight approach,” IEEE Internet Computing,
vol. 12, no. 5, pp. 24–31, 2008. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/MIC.2008.98

[30] D. DâĂŹMello, V. Ananthanarayana, and S. Salian, “A review
of dynamic web service composition techniques,” in Advanced
Computing, ser. Communications in Computer and Information
Science, N. Meghanathan, B. Kaushik, and D. Nagamalai, Eds.
Springer Berlin Heidelberg, 2011, vol. 133, pp. 85–97.

[31] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros, “Workflow patterns,” Distributed
and Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

[32] N. Russell, Arthur, W. M. P. van der Aalst, and N. Mulyar,
“Workflow control-flow patterns a revised view,” BPMcen-
ter.org, New York, NY, USA, Tech. Rep. BPM-06-22, 2006.

[33] G. D. Ivan Zuzak, Ivan Budiselic, “A finite-state machine
approach for modeling and analyzing restful systems,” Web
Engineering, vol. 10, no. 4, pp. 353–390, 2011.

[34] M. Maleshkova, C. Pedrinaci, J. Domingue, G. Alvaro, and
I. Martinez, “Using semantics for automating the authentication
of web apis,” in The Semantic Web - ISWC 2010, ser. Lecture
Notes in Computer Science, P. Patel-Schneider, Y. Pan, P. Hit-
zler, P. Mika, L. Zhang, J. Pan, I. Horrocks, and B. Glimm, Eds.
Springer Berlin / Heidelberg, 2010, vol. 6496, pp. 534–549.

[35] E. Hammer-Lahav, “The oauth 1.0 protocol,” 2010.
[36] Q. Tao, H. you Chang, C. qin Gu, and Y. Yi,

“A novel prediction approach for trustworthy qos
of web services,” Expert Systems with Applications,
vol. 39, no. 3, pp. 3676 – 3681, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417411013698

[37] H. A. Taha, Operations research: an introduction. Pearson-
/Prentice Hall, 2007.

[38] M. Alrifai, T. Risse, and W. Nejdl, “A hybrid approach
for efficient web service composition with end-to-end qoS
constraints,” TWEB, vol. 6, no. 2, p. 7, 2012. [Online].
Available: http://doi.acm.org/10.1145/2180861.2180864

[39] R. Hamadi and B. Benatallah, “A petri net-based
model for web service composition,” in Fourteenth
Australasian Database Conference (ADC2003), ser. CRPIT,
K.-D. Schewe and X. Zhou, Eds., vol. 17. Adelaide,
Australia: ACS, 2003, pp. 191–200. [Online]. Available:
"http://crpit.com/confpapers/CRPITV17Hamadi.pdf"

[40] M. Zeleny and J. L. Cochrane, Multiple criteria decision
making. McGraw-Hill New York, 1982, vol. 25.

[41] J. Bellido, R. Alarcón, and C. Pautasso, “Control-flow patterns
for decentralized restful service composition,” ACM Trans.
Web, vol. 8, no. 1, pp. 5:1–5:30, December 2013. [Online].
Available: http://doi.acm.org/10.1145/2535911

