
A Model to Guide Dynamic Adaptation Planning in
Self-Adaptive Systems

Andrés Paz∗ and Hugo Arboleda†
Universidad Icesi, I2T Research Group

Cali, Colombia
∗afpaz@icesi.edu.co, †hfarboleda@icesi.edu.co

Abstract—Self-adaptive enterprise applications have the ability
to continuously reconfigure themselves according to changes in
their execution contexts or user requirements. The infrastructure
managing such systems is based on IBM’s MAPE-K reference
model: a Monitor and an Analyzer to sense and interpret context
data, a Planner and an Executor to create and apply structural
adaptation plans, and a Knowledge manager to share relevant
information. In this paper we present a formal model, built
on the principles of constraint satisfaction, to address dynamic
adaptation planning for self-adaptive enterprise applications. We
formalize, modify and extend the approach presented in [1] for
working with self-adaptation infrastructures in order to provide
automated reasoning on the dynamic creation of structural
adaptation plans. We use a running example to demonstrate the
applicability of such model, even in situations where complex
interactions arise between context elements and the target self-
adaptive enterprise application.

Index Terms—Self-Adaptive Enterprise Applications, Dynamic
Adaptation Planning, Automated Reasoning.

I. INTRODUCTION

Currently many Enterprise Applications (EAs) live in dy-
namic execution contexts, interacting with other systems, and
under the influence of stimuli from sources inside or outside
the system scope. This may affect their behavior or the levels
at which they satisfy agreed quality; however, regardless of
these impacts, they still have to fulfill their service qual-
ity agreements. On the one hand, the fulfillment of quality
agreements is completely and utterly dependent on system
architectures, which comprises software architecture, hardware
and network infrastructure. On the other hand, in response to
ever increasing needs for strengthened responsiveness and re-
siliency, quality agreements may evolve to reflect this business
reality.

Autonomic computing deals with the management of in-
dependent components capable of handling both external
resources and their internal behavior, which are constantly
interacting in accordance with high-level policies. Its required
infrastructure usually integrates an autonomic manager, an
implementation of the generic control feedback loop from
control theory, and managed components. Most autonomic
managers are based on the MAPE-K reference model [2],
allowing software systems to be adapted to context changes
in order to ensure the satisfaction of agreed Service Level
Agreements (SLAs). Five elements make up the reference
model: Monitor, Analyzer, Planner, Executor and Knowledge
Manager. The Monitor continuously senses context conditions

and the Analyzer interprets and compares the sensed data
with SLAs, the Planner synthesizes and creates adaptation
plans when required, and the Executor alters the system’s
behavior by modifying its structure in accordance with a given
adaptation plan. All of them share information through the
Knowledge Manager element.

In this paper we present a formal model, built on the
principles of constraint satisfaction, to address the task of the
Planner element, i.e. dynamic adaptation planning for self-
adaptive enterprise applications. Our work in this paper is
focused around changing quality agreements while EAs are
already operational. This task, however, has a direct impact
on system architecture. We consider in this work only the
relationships of such quality agreements with software archi-
tecture in order to plan the necessary structural adaptations
to meet the new quality specifications. We use a running
example to demonstrate the applicability of such model, even
in situations where complex interactions arise between context
elements and the target self-adaptive enterprise application. In
the context of product line engineering, decision and resolution
models have been used for planning the composition of core
assets according to variable configurations that include user
requirements, e.g., [3], [4]. All of such approaches, however,
deal with problems related to product configuration without
taking into account the problem of planning dynamic adapta-
tion of systems.

Some authors have explored different trends for generating
reconfiguration plans. For instance [5], [6] use artificial in-
telligence based on hierarchical task networks and situation
calculus, respectively, to plan new web service compositions
in an attempt to overcome faults. [7] calculates fuzzy values
of quality of service (QoS) levels for available service variants
and selects the variants with the nearest QoS levels that fit the
context and user requeriements. There are other approaches
that implement dynamic adaptation of service compositions,
e.g., [8], [9], [10]; however, they neither provide implementa-
tion details nor formal specifications of any formal model for
planning activities.

In previous work [1], we presented an approach based
on constraint satisfaction for product derivation planning in
model-driven software product lines. There, we modeled the
problem of planning the transformation workflow to derive
products as a constraint satisfaction problem. In this paper,
we base on such model and we further formalize, modify

and extend it for working with self-adaptation infrastructures
in order to provide automated reasoning on the creation of
structural adaptation plans.

The remainder of this paper is organized as follows. Sec-
tion II introduces the background of this work. Section III
presents our motivating case along with an illustrative example
which we use as a running example throughout the following
sections. Section IV details our formal model, including the
necessary definitions and specifications. Section V describes
the automated reasoning that we currently provide. Section VI
discusses related work. Finally, Section VII sets out conclu-
sions and outlines future work.

II. BACKGROUND

A. Autonomic Computing

In [11], IBM researchers Kephart and Chess introduced an
architectural approach to realize autonomic computing based
on independent elements capable of managing both external
resources and their internal behavior. In light of this, auto-
nomic systems are compositions of these autonomic elements,
constantly interacting in accordance with high-level policies.
Each autonomic element is composed of an autonomic man-
ager, an implementation of the generic control feedback loop
from control theory, and a managed element, a hardware or
software resource, such as a server, a service or a set of
interconnected software components.

The autonomic manager, based on the MAPE-K reference
model [2], is the infrastructure that allows the software systems
to be adapted to unforeseen context changes in order to ensure
the satisfaction of agreed Service Level Agreements (SLAs).
Comprising this infrastructure is (i) a Monitor element that
continuously senses relevant context and system control data;
(ii) an Analyzer element that interprets monitoring events
reported by the Monitor to determine whether the SLAs
are being fulfilled; (iii) a Planner element that creates a
configuration from the variability model according to the
context conditions delivered by the Analyzer to generate an
adaptation plan, which defines the modification required by the
deployed system structure and the required parameters to reach
a desired system state; (iv) an Executor element that realizes
adaptation plans, which alters the system’s behavior; and (v)
a Knowledge Manager element sharing relevant information
among the other elements.

B. Dynamic Software Product Line Engineering

Software Product Line Engineering (SPLE) is an expanding
approach that aims at developing a set of software systems
that share common features and satisfy the requirements of a
specific domain [12]. While having much in common, product
line members still differ in functional and quality require-
ments. Variability management is the key process in SPLE
that is in charge of dealing with the analysis, modeling, design
and realization of variants while considering adequate decision
making support for building products by using reusable assets.

Variability Models. Variability in SPLE is captured in
variability models, such as the Orthogonal Variability Model

(OVM) [13], [12]. An OVM is a variability model designed
to only document variability; we use OVMs in this paper
to document variability in our running example described in
Section III-B. In OVMs like the one presented in Figure 1,
a variation point (p) represents a variable item in a system
and is depicted as a triangle. A variant (v) represents a
particular option to instance the variation point and is de-
picted as a rectangle linked to the variation point by one of
three types of relationships. Relationships between variants
and variation points may be mandatory, optional or set. A
mandatory relationship, depicted in Figure 1 as a solid line,
states that if a variation point p is present its child variant
v must be present too. An optional relationship, depicted as
a dotted line, states that if a variation point p is present
its child variant vp may or may not be present. A set of
children variants {vi | i = 1, . . . , z} has a set relationship
with their parent variation point p when an interval [x, y]
of its children vi can be included {vi | x ≤ i ≤ y} if
their parent is present. This type of relationship is illustrated
as variants grouped by an angular solid line with a label
describing the interval. Relationships can also exist between
variants of different variation points. Such relationships are,
namely, requires and excludes; they are drawn as single arrow
line and double arrow line respectively. A requires relationship
is a cross variant constraint that states that if variant requires
variant vb then if va is present, vb must be present too. An
excludes relationship is a cross variant constraint that states
that if variant va excludes variant vb then the variants cannot be
present at the same time. We give a formal definition of each
relationship when we present our proposed model in Section
IV.

[Optional Variant]V

[Variation
Point]

P

V [Set Variant] [Set Variant]V

[x..y][Mandatory Variant]V

Fig. 1. Orthogonal Variability Model

Dynamic SPLE. Dynamic SPLE [14] extends current prod-
uct line engineering approaches by moving their capabilities
to runtime, helping to ensure that system adaptations lead to
desirable properties. It is concerned about the management of
reusable and dynamically reconfigurable core assets, facing
the challenge of binding variants to such assets, at runtime,
when software is required to be adapted according to context
changes.

Decision and Resolution Models. When variants are se-
lected by architects at design time (in the context of SPLE),
or defined by context conditions at runtime (in the context
of dynamic SPLE), concrete core assets must be selected as

part of the (re)composition plan. In practice, there is a signif-
icant gap between variability at a conceptual level (variation
points and variants) and variability at the implementation level
(concrete core assets to be deployed). With the objective of
closing that gap, decision and resolution models are used [4],
[15]. A decision model relates open decisions and possible
resolutions to define the necessary actions to derive product
line members in accordance with configurations, which are
sets of selected variants. A resolution model is the instance
of a decision model, and it is used to create a product line
member. In a resolution model all the decisions captured in
a decision model are resolved, thus, it defines a product line
member including a subset of chosen variants, the core assets
required to derive the desired product, and the adaptation that
must be performed on the core assets to obtain such product
line member.

Variant Interactions. Decision models rapidly become very
complex artifacts in the face of many variants and, specially,
when variants interactions appear. When several variants are
combined interactions between them may occur; this means,
the presence of one variant affects the behaviour of another.
Let suppose a variant vi is related to a software component
ci, and a variant vj is related to a software component cj ,
an interaction exists when the presence of vi and vj in one
configuration raises a problem when composing ci and cj .
Some variant interactions may be benign, planned or desirable,
but others, in turn, may have unwanted effects that may
disrupt the user from obtaining the expected behavior. Since
the variant interactions problem can be arbitrarily complex
and computationally difficult to treat, a formal approach is an
appropriate and flexible option.

C. Constraint Satisfaction

A great variety of combinatorial problems can be expressed
as searching for one or several elements in a vast space
of possibilities. In general, the search space is defined as
all combinations of possible values for a predefined set of
variables. Elements to be searched for are particular values
of these variables. In most cases the desired values of the
elements are implicitly specified by properties they should
satisfy. These properties are known as constraints, which are
usually expressed as predicates over some set of variables.
Roughly speaking, a problem formulated in this frame is
known as a Constraint Satisfaction Problem (CSP) [16].

Solving a CSP consists of two steps: modeling the problem
(logical specification) and finding its solutions through a form
of search (in this paper we perform a basic backtracking).
Modeling involves basically the specification of the variables,
their domains and the constraints among them. Solving the
CSP through backtracking is an attempt at trying to incremen-
tally build resolution candidates by assigning possible values
to the variables. Partial candidates that cannot become a valid
solution are discarded. If all variables are bound, a resolution
candidate has been found. If, after exploring all possibilities
no resolution candidate has been found, then the problem does
not have a solution.

III. MOTIVATING CASE

A. The SHIFT Framework

Our research group has proposed independent approaches
and implementations in the contexts of autonomic comput-
ing with the DYNAMICO reference model [17], quality of
service (QoS) contract preservation under changing execution
conditions with QOS-CARE [18], model-based product line
engineering with the FIESTA approach [4], [15], automated
reasoning for derivation of product lines [1], and the recent
(unpublished) contributions regarding quality variations in
the automated derivation process of product lines [19]. The
required integration of all these efforts in a move to approach
automation and quality awareness along the life cycle of
enterprise applications has motivated the creation of what we
call the SHIFT Framework. Figure 2 presents a high-level
architectural view of SHIFT’s constituting elements.

The Automated Derivation region is concerned with
providing support for functional and quality configuration
and derivation of deployable enterprise applications compo-
nents and monitoring infrastructure. Generated components are
stored in the Component Repository, which is managed
by a Knowledge Manager element; they are an input for
the adaptation planning process. The monitoring infrastructure
is deployed as part of the Autonomic Infrastructure
region, which implements the adaptation feedback loop of the
DYNAMICO reference model [17].

As part of the Planner element, our focus in this pa-
per, SHIFT considers the need for dynamically planning
adaptations to application structure based upon quality con-
figurations. Realizing the adaptation plans in the deployed
and operating managed Enterprise Application (EA) considers
transporting components from their source repository to the
corresponding computational resource, undeploying previous
versions of them, deploying them into the middleware or
application server, binding their dependencies and services,
and executing them. In addition, if necessary, to recompile
system source code to make measurement interfaces available
to the monitoring infrastructure.

In order to obtain the best possible selection of com-
posable components, or optimum resolution, when planning
an adaptation, we propose in this paper addressing dynamic
adaptation planning through a model built on the principles
of constraint satisfaction, which will help reasoning upon the
set of constraints defined by reachable quality configurations
and their relationships with the components in the component
repository. Following Section IV will refer to the relationships
between components in the component repository and the
reachable quality configurations as decision models, and all the
possible adaptation plans that can be derived from a decision
model given a specific quality configuration as resolution
models.

B. Running Example

To illustrate the problem of adapting an EA, while at
runtime, when the set of quality agreements (captured as

Autonomic Infrastructure

Automated Derivation

Analyzer

Monitor

Planner

Executor

Knowledge ManagerManaged EA

Reference
Control
Input

Context
Data

C
on

tro
l

Sy
m

pt
om

s

Control Error

Control Actions

Instrumented
Actions

Context
Disturbances

Measured
Control
Data

Decision Support

Domain Reference Architecture

EA Component
and Quality
Repository

Quality Decision
Models

EA Component
Sets /

 Quality decision
Models

Monitoring Infrastructure

EA Component
Sets /

 Quality
Decision Models

Component Sets
to be Deployed /

Undeployed

Quality Configurations

Legend: Data flowModel Autonomic
element RepositoryEnterprise

Application

Fig. 2. High-level architectural view of the SHIFT elements.

quality scenarios as explained by Bass et al. in [20]) changes,
we use the case of a large-scale e-commerce application. We
use this case as a running example throughout the following
sections. The following sections give the details regarding
how the Planner element of the SHIFT Framework captures
adaptation constraints and reasons upon them to determine
possible adaptation plans to satisfy changing context condi-
tions.

With our example e-commerce application there is the need
to handle component compositions and adaptations driven by
different system quality levels in accordance with varying
shopping activities (e.g., special offers on certain products,
shopping frenzies). This implies working with varying quality
scenarios. Thus, we use the OVM in Figure 3 to capture
the different quality scenarios that can be configured for
the e-commerce EA. The quality attribute, environment and
stimuli fields of a quality scenario represent a variation point.
The response field represents a variant. Figure 3 illustrates 3
variation points with all of their variants linked with optional
relationships.

Suppose the e-commerce application has been initially de-
ployed fulfilling the requirement of purchase by credit card and
the quality configuration corresponds to the selection of quality
scenarios V2 and V4 detailed in Table I. The time-behavior
scenario determines an average latency of 6 seconds for
purchases with credit card under a load of 1,000 purchases per
minute, stochastically. The confidentiality scenario specifies
all available sensitive information is encrypted to prevent

Confidentiality

P2

Encryption of
sensitive information

V4

Prevent access from
unauthorized parties

V5

Credit Card
Purchase

Time-behavior

P1

V1 Purchases processed
without regard of their

latency

Purchases processed
within an average

latency of 2 seconds

V3

Purchases processed
within an average

latency of 6 seconds

V2

[1..1]

Availability

P3

Spare componentsV6

Fig. 3. Variability Model

unauthorized access.
A component diagram for the implementation of the pur-

TABLE I
QUALITY SCENARIOS FOR THE E-COMMERCE APPLICATION

Quality At-
tribute

Performance – Time behavior

Environment The application provides a set of services available to concurrent users over the Internet under normal
operating conditions.

Stimuli Users initiate 1,000 purchases with credit card as payment method per minute, stochastically.
Response Every purchase is processed with an average latency of 6 seconds.

Quality At-
tribute

Security – Confidentiality

Environment The application provides a set of services that makes sensitive information available to other
applications over the Internet.

Stimuli Another application intercepts data by attacking the network infrastructure in order to obtain sensitive
information.

Response The architecture does not control the other application’s access, but information is encrypted in order
to prevent access to sensitive information.

chase with credit card requirement is illustrated in Figure 4.
This implementation comprises (i) a Purchase component
that manages the workflow performed for any purchase, (ii) a
Credit Card Authorization component in charge of
performing the workflow to get approval for the transaction
with the issuing bank (or credit card association), (iii) a
Risk Tool component responsible for validating credit card
information provided by the customer and the responses sent
from the issuing bank, (iv) a Credit Card Settlement
component that requests the transfer of funds from the issuing
bank into the merchant’s account, (v) a Cryptography
Manager component that processes the encryption and de-
cryption of information to and from the issuing bank, and (vi) a
Payment Processor component managing all communi-
cations to the multiple issuing banks. The payment processing
behavior exhibited by the previous implementation is specified
step by step in Figure 5.

Purchase Credit Card
Authorization

Payment
Processor

Risk Tool

Credit Card
Settlement

Cryptography
Manager

Fig. 4. Partial set of components for initial e-commerce application

For a first adaptation setting suppose now that, while in
operation, the application’s initial quality configuration has
been changed due to an expected peak in system load caused
by an upcoming Cyber Monday shopping season. Particularly

Purchase Credit Card
Authorization

Payment
Processor

Risk Tool

Credit Card
Settlement

Cryptography
Manager

(1)

(2)
(6)

(3)
(5)

(4)

(7)

(8)
(10)

(9)

(1) authorize payment
(2) validate credit card
information
(3) encrypt payment
information

 (4) request reserve
 (5) decrypt response
 (6) validate response
 (7) settle payment

(8) encrypt settlement
information
(9) request settlement
(10) decrypt response

Fig. 5. Component collaboration for initial e-commerce application

quality scenario V2 has been replaced by quality scenario V3,
presented in detail in Table II. Quality scenario V4 remains
selected. In turn, the application’s constituent components
must be changed to new ones developed with the modified
quality configuration in mind.

The adapted implementation for the purchase with
credit card requirement is illustrated in Figure 6. This
implementation comprises modified versions of the
Purchase, Credit Card Authorization and
Credit Card Settlement components. These modified
components are marked with an asterisk symbol (*). A
new component appears, the Order Manager component,
which provides a consolidated and automated processing of
orders. The Payment Processor component remains
unchanged. The behavior of this implementation is changed
due to the structural adaptation performed that streamlined
the workflow in comparison with the initial deployment.
Figure 7 shows the collaboration steps between the new set

TABLE II
MODIFIED TIME-BEHAVIOR SCENARIO FOR THE E-COMMERCE APPLICATION

Quality At-
tribute

Performance – Time behavior

Environment The application provides a set of services available to concurrent users over the Internet under normal
operating conditions.

Stimuli Users initiate 20,000 purchases with credit card as payment method per minute, stochastically.
Response Every purchase with credit card as payment method is processed with an average latency of 2 seconds.

of components.

Purchase * Credit Card
Authorization *

Payment
Processor

Order
Manager

Credit Card
Settlement *

Modified components

New components

Fig. 6. Partial set of components for adapted e-commerce application

Purchase * Credit Card
Authorization *

Payment
Processor

Credit Card
Settlement *

Order
Manager

(1) (2)

(3) (a)

(b)

(1) authorize payment
(2) request reserve
(3) store order

Modified components

New components

(a) settle payment
(b) request settlement

Fig. 7. Component collaboration for adapted e-commerce application

Suppose now, for a second adaptation setting, that to further
strengthen the application to cope with the coming sales burst
a new quality configuration has been specified selecting quality
scenarios V3, V4 and V6. The new availability scenario V6
in Table III states that the system initializes and puts into
operation spare components when part of the application be-
comes unavailable. The spare components are initialized from
a persistent state before entering into operation. Thus, this
response requires the use of persistent storage (e.g., database)
to maintain application state and be able to replace failed
components. Let’s assume that the Payment Processor
helps meet the time-behavior scenario in Table II due to its
use of a cache to avoid requests to the database. A variant
interaction arises when trying to fulfill both quality scenarios,

as the availability scenario makes accessing the database
mandatory and no caches are permitted. Hence, the availability
scenario cannot be promoted with the planned adaptation
shown in Figure 6. A new solution needs to be designed or
the quality scenario needs to be either redefined or dropped.

IV. SELF-ADAPTATION PLANNING

The previous e-commerce application provides an interest-
ing example of the decisions that need to be taken when
planning an adaptation to satisfy changing quality scenarios.
Manually evaluating all component compositions, their rela-
tionships to quality scenarios and quality scenario interactions
are costly, time consuming and error-prone; even more when
the software system is already operational. In this section we
propose an approach addressing dynamic adaptation planning
built on the principles of constraint satisfaction.

Benavides et al. in [21] propose mapping variability models,
particularly feature models, to an equivalent CSP represen-
tation in order to deal with the automated analysis of such
models. To be able to analyze varying quality scenarios for the
creation of adaptation plans we translate input OVMs holding
the quality scenarios into a specific CSP representation. Defi-
nition 1 formally describes this CSP as a quality model. It is
modified from the one presented for the translation of feature
models into CSP in [21].

Definition 1: A quality model µ is a three-tuple of the form
(Q,W,R); where Q is a finite set of l variables made up of h
variation points p and i variants v; W is a finite set of domains
made of the variants’ configuration states, with a state of 1, if
the quality scenario is unselected, or 2, if the quality scenario
is selected; and R is a finite set of constraints defined on Q.

Q = {{〈pk〉 | k = 1, . . . , h},
{〈vi〉 | i = 1, . . . , n}}

W =

{{
Wpk

= [1..2] |
 1 if pk is unselected

2 if pk is selected

},{
Wvi = [1..2] |

 1 if vi is unselected
2 if vi is selected

}}
(1)

R = {rmandatory, roptional, rset, rrequires, rexcludes} (2)

TABLE III
NEW QUALITY SCENARIO FOR THE E-COMMERCE APPLICATION

Quality At-
tribute

Reliability – Availability

Environment A subsystem of the application becomes unavailable.
Stimuli Users initiate transactions to the affected subsystem.
Response Spare components are initialized and placed into operation.

The set R of Equation 2 contains the following relationship
constraints:

Mandatory. A mandatory relationship states that if a vari-
ation point p is present its child variant v must be present
too.

rmandatory = 〈v ≥ 2⇔ p ≥ 2〉

Optional. An optional relationship states that if a variation
point p is present its child variant v may or may not be present.

roptional = 〈p < 2⇒ v < 2〉

Set. A set of children variants {vi | i = 1, . . . , z} has a set
relationship with their parent variation point p when a number
of them can be included if their parent is present.

rset = 〈x ∈ [0..f], y ∈ [1..g]

((g ≤ z ∧ p ≥ 2)⇒ ((x× 2) ≤ (

z∑
i=1

vi) ≤ (y × 2)))〉

Requires. A requires relationship is a cross variant constraint
that states that if variant va requires variant vb then if va is
present, vb must be present too.

rrequires = 〈a, b ∈ [1. . n]((a 6= b) ∧ (va ⇒ vb))〉

Excludes. An excludes relationship is a cross variant con-
straint that states that if variant va excludes variant vb then
the variants cannot be present at the same time.

rexcludes = 〈a, b ∈ [1. . n]((a 6= b) ∧ ¬(va ∧ vb))〉

In accordance to Definition 1, the OVM in Figure 3 can be
translated to the quality model described in Equation 3.

µe−commerce = (Qe−commerce,W,R) (3)

Where

Qe−commerce = {p1, p2, p3, v1, v2, v3, v4, v5, v6}

W and R are as specified in Equations 1 and 2, respectively.
In order to plan an adaptation, values must be assigned

to the variables in the Q set conforming to the selection
and unselection of quality scenarios. We call this a quality
configuration. The quality configurations matching the initial

scenario and the two adaptation settings for Cyber Monday
in Section III are as specified in Equations 4, 5 and 6,
respectively.

Qinitial
e−commerce = {p1 = 2, p2 = 2, p3 = 1,

v1 = 1, v2 = 2, v3 = 1, v4 = 2, v5 = 1, v6 = 1}
(4)

Qtimebehavior
e−commerce = {p1 = 2, p2 = 2, p3 = 1,

v1 = 1, v2 = 1, v3 = 2, v4 = 2, v5 = 1, v6 = 1}
(5)

Qtimebehavior+availability
e−commerce = {p1 = 2, p2 = 2, p3 = 2,

v1 = 1, v2 = 1, v3 = 2, v4 = 2, v5 = 1, v6 = 2}
(6)

Promoting a quality scenario may often require several
composed components, thus, in this paper we refer as a
componentset (see Definition 2) to the composition of com-
ponents promoting a quality scenario. We denote the compo-
sition operator as ⊕.

Definition 2: A componentset c is a composition of g
components e.

c =

g⊕
u=1

eu

For the example e-commerce application we have identified
five componentsets: c1 (see Equation 7), c2 (see Equation 8),
c3 (see Equation 9), c4 (see Equation 10) and c5 (see Equation
11).

c1 = Purchase⊕ Credit Card Authorization⊕
Credit Card Settlement⊕ Risk Tool

(7)

c2 = Cryptography Manager (8)

c3 = Payment Processor (9)

c4 = Purchase*⊕ Credit Card Authorization*⊕
Credit Card Settlement*

(10)

c5 = Order Manager (11)

Table IV shows the relationships established between the
quality scenarios (in the remainder of this paper we refer to
every variant, i.e. response alternative, as one quality scenario)
and the identified componentsets as presented in Section III.
A 3 indicates the componentset requires the quality scenario
to be selected in the configuration; on the contrary, an 7
indicates that the componentset requires the quality scenario
to be unselected. A “–” indicates the componentset is not
constraint by the presence of the quality scenario.

TABLE IV
RELATIONSHIPS BETWEEN QUALITY SCENARIOS AND COMPONENTS

Quality Scenarios componentsets
c1 c2 c3 c4 c5

v1 3 – 3 7 7
v2 3 – 3 7 7
v3 7 7 3 3 3
v4 – 3 – 3 –
v5 7 7 7 7 7
v6 7 7 7 7 7

One of the main elements of the proposed approach is
the decision model. Decision models in our approach relate
componentsets stored in a component repository (see Figure
2) and quality scenarios to define the necessary actions to adapt
an enterprise application in accordance to a configuration of
such quality scenarios.

Definition 3: A decision model D is a finite set of m × n
decisions. Each decision d relates one componentset cj with
one quality scenario vi.

D = {〈dij〉 | j = 1, . . . ,m ∧ i = 1, . . . , n}

Where

dij =

 0 if vi does not constraint the deployment of cj
1 if cj requires vi = 1
2 if cj requires vi = 2

Table IV maps to the decision model in Equation 12.

De−commerce = {dv1c1 = 2, dv2c1 = 2, dv3c1 = 1, dv4c1 = 0,

dv5c1 = 1, dv6c1 = 1, dv1c2 = 0, dv2c2 = 0,

dv3c2 = 1, dv4c2 = 2, dv5c2 = 1, dv6c2 = 1,

dv1c3 = 2, dv2c3 = 2, dv3c3 = 2, dv4c3 = 0,

dv5c3 = 1, dv6c3 = 1, dv1c4 = 1, dv2c4 = 1,

dv3c4 = 2, dv4c4 = 2, dv5c4 = 1, dv6c4 = 1,

dv1c5 = 1, dv2c5 = 1, dv3c5 = 2, dv4c5 = 0,

dv5c5 = 1, dv6c5 = 1}

(12)

A resolution model is a decision model instance, which
defines an adaptation plan.

Definition 4: A resolution model S is a finite set of
s componentset deployments. The deployment sj is 0 if
the componentset j should not be deployed, and 1 if the
componentset j should be deployed.

S = {〈sj〉 | j = 1, . . . ,m}

Where

sj =

{
0 if cj should not be deployed
1 if cj should be deployed

The resolution for the first adaptation setting in our e-
commerce example is presented in Equation 13. The adap-
tation plan represented in this resolution model indicates that
the componentsets c3, c4 and c5 should be the ones deployed
in order to promote the configured quality scenarios (see
Equation 5). According to the decision model in Equation
12, with the available componentsets there is no adaptation
that can meet the configured quality scenarios in Equation 6
corresponding to the second adaptation setting.

Se−commerce = {s1 = 0, s2 = 0, s3 = 1,

s4 = 1, s5 = 1}
(13)

However, not every possible resolution model is a valid
resolution model. A valid resolution model must satisfy the
following constraints:

Definition 5: Deployment constraint. A componentset
must be deployed satisfying the respective deployment con-
dition in the decision model.

∀j ∈ [1. .m]sj = 1⇒ ∀i ∈ [1. . n](cij = 0∨(cij 6= 0∧cij = vi))

Definition 6: Non-exclusion constraint. Two deployable
componentsets must not exclude each other.

∀j1, j2 ∈ [1. .m](sj1 = sj2 = 1 ∧ j1 6= j2)

⇒ ∀i ∈ [1. . n](cij1 = 0 ∨ cij2 = 0 ∨ cij1 = cij2)

Definition 7: Completeness constraint. All deployable
componentsets must take into account all the quality sce-
narios’ states in the quality configuration.

∀i ∈ [1. . n]∃j ∈ [1. .m](sj = 1 ∧ cij 6= 0))

Definition 8: A self-adaptation plan is a three-tuple of the
form (L, T, P); where L is a finite set of variables made up
of the quality configuration Q (see Definition 1), the decision
model D (see Definition 3) and the set of possible resolution
models M (see Definition 4); T is a finite set of domains made
up of the domains for the quality configuration (see Definition
1), decision model (see Definition 3) and resolution models
(see Definition 4); and P is a finite set of constraints defined
on L (see Definitions 1, 5, 6 and 7).

ωD
Q = (L, T, P)

Definition 9: Let ωD
Q be a self-adaptation plan of the form

(L, T, P), its solution space denoted as sol(ωD
Q) is made up

of all its possible solutions (possible resolution models M).
An adaptation is satisfiable if the solution space of ωD

Q is not
empty.

sol(ωD
Q) = {〈S〉 | ∀sj(sj ∈ S ⇒ P (sj) = true)}

V. AUTOMATED REASONING

This section presents how automated reasoning is provided
in the Planner element. Due to interactions between quality
scenarios, and since different component compositions may be
available; conflicts between componentsets may arise. Auto-
mated reasoning seeks to cope with this issue by providing
additional information to get the best possible selection of
componentsets when determining an adaptation plan. The
proposed approach is able to answer the following questions.

Application. Given a decision model, a quality configu-
ration and a self-adaptation plan, there should be a way of
verifying the resolution model’s applicability to adapt the
specified enterprise application.

Definition 10: Let D be a decision model and Q a quality
configuration, a resolution model S is applicable if it is an
element of the solutions of the equivalent CSP ωD

Q .

applicable(S)⇔ (S ∈ sol(ωD
Q)) (14)

Possible resolutions. Once a quality configuration is de-
fined, there should be a way to obtain the potential sets of
componentsets that promote it.

Definition 11: Let D be a decision model and Q a quality
configuration, the potential resolution models that promote Q
from D are equal to the solutions of the equivalent CSP ωD

Q .

resolutions(Q,D) = {〈S〉 | S ∈ sol(ωD
Q)} (15)

Number of resolutions. A key question to be answered
is how many potential resolution models a decision model
contains to adapt an enterprise application. The higher the
number of resolutions, the more flexible and complex becomes
the decision model.

Definition 12: Let D be a decision model and Q a quality
configuration, the number of potential resolution models that
promote Q from D, or cardinal, is equal to the solution number
of its equivalent CSP ωD

Q .

cardinal(Q,D) =| sol(ωD
Q) | (16)

Validation. A valid decision model is a model where at least
one resolution model can be selected to adapt an enterprise
application. That is, a model where ωD

Q has at least one
solution.

Definition 13: A decision model D is valid to adapt an
enterprise application promoting quality configuration Q if its
equivalent CSP is satisfiable.

valid(Q,D)⇔ resolutions(Q,D) 6= ∅ (17)

Flexible componentsets. A flexible componentset is a
componentset that can be applied in self-adaptation plans for
the same quality scenario with different combinations of other
componentsets. Given a set of possible resolution models,

there should be a way to find the componentsets appearing
more than once in such set.

Definition 14: Let M be the set of possible resolution
models, the set of flexible componentsets in M is equal
to the componentsets selected to be applicable found in the
intersection of M .

flexible(M) = {〈s〉 | s = 1 ∧ s ∈
⋂
M} (18)

Inflexible componentsets. An inflexible componentset is a
componentset that only makes part of one resolution model.
Given a set of possible resolution models, there should be a
way to find the inflexible componentsets in such set.

Definition 15: Let M be the set of possible resolution
models, the set of inflexible componentsets in M is equal
to the componentsets selected to be applicable not found in
the intersection of M .

inflexible(M) = {〈s〉 | s = 1 ∧ s /∈
⋂
M} (19)

Optimum resolution. Finding out the best resolution model
according to a criterion is an essential task for self-adaptation
in the proposed approach. Given a set of possible resolution
models, there should be a way to find the solution that matches
the criteria of an objective function. Two objective functions
were taken into account. On the one hand, the function that
outputs the resolution model with the greater number of appli-
cable componentsets to self-adapt an enterprise application;
namely max. On the other hand, the function that outputs
the resolution model with the least number of applicable
componentsets to self-adapt an enterprise application; namely
min.

Definition 16: Let M be the set of possible resolution
models and O an objective function, the optimum solution
(max or min) is equal to the optimum space of ωD

Q .

max(M,O) = max(ωD
Q , O)

min(M,O) = min(ωD
Q , O)

(20)

Definition 17: Let ωD
Q be a CSP, its optimum space, denoted

as max/min(ωD
Q , O), is made up of all the solutions that

maximize or minimize O, respectively.

max(ωD
Q , O) = {〈S〉 | ∀S′((S′ ∈ sol(ωD

Q) ∧ S′ 6= S)

⇒ (O(S) ≥ O(S′)))}
min(ωD

Q , O) = {〈S〉 | ∀S′((S′ ∈ sol(ωD
Q) ∧ S′ 6= S)

⇒ (O(S) ≤ O(S′)))}

(21)

VI. RELATED WORK

There are some approaches that have used CSPs for the
manipulation of variability models in SPL Engineering. One
of the most representative works on the subject was presented
in [21], where the authors presented an algorithm to transform
feature models into a CSP. The authors proposed to use CSPs
to reason on feature models in such a way that they can answer
questions such as number of products, filters based on user

selections, valid configurations, among others. Several other
contributions have been made since then, presenting CSPs as
a good complement to SPLs (e.g., [22], [23]). All of them,
however, deal with problems related to product configuration
without taking into account the problem of planning compo-
sition of products.

Some authors have explored different trends for generating
reconfiguration plans. For instance, Moore et al. [5] use
artificial intelligence (AI) based on hierarchical task networks;
McIlraith et al. [6] propose an AI planner built by adapting
and extending Golog [24], which is a logic programming
language based on the situation calculus, built on top of
Prolog. Other planners, like SHOP2 [25] are hierarchical task
network planners, based on the situation calculus. When com-
posing Web services, high level generic planning templates
(subplans) and complex goals can be represented by Golog.
These approaches, however, do not provide any support for
self-adaptive infrastructures. On the other hand, Beggas et al.
propose in [7] the use of fuzzy logic in adaptation planning.
Adaptation controllers calculate fuzzy values for the QoS
levels of available service variants, the current context state
and user requirements. The variants with the nearest QoS
levels that fit the current context state and user requirements
will be selected for application.

There are approaches that implement dynamic adaptation
of service compositions at the language level e.g., [26], [27];
these can be complex and time-consuming, and with low-
level implementation mechanisms for every element of the
adaptation infrastructure. Our work is more closely related
to approaches using models at runtime, e.g., [8], [9], [10],
which implement, tacit or explicitly, the MAPE-K reference
model. The recent work of Alférez et al. [10] summarizes
good practices implementing the MAPE-K reference model.
They center their attention on service re-composition at run-
time using dynamic product line engineering practices for
assembling and re-deploying complete applications according
to context- and system-sensed data. Application changes are
reflected into the service composition by adding or removing
fragments of Business Process Execution Language (WS-
BPEL) code, which can be deployed at runtime. In order to
reach adaptations, the authors argue that they use Constraint
Programming for verifying at design time the variability model
and its possible configurations; however, they neither provide
implementation details nor formal specifications of any CSP
model for planning activities.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a formal model based on the
principles of constraint satisfaction for supporting the cre-
ation of Planner elements in self-adaptation infrastructures.
We use CSPs to reason on the set of constraints defined
by reachable configurations and their relationships with the
components stored in the component repository. We provided
formal definitions of the concepts of quality model, decision
model, resolution model, deployment constraint, non-exclusion
constraint, completeness constraint, self-adaptation plan and

solution space. Our formal model of the Planner allows
us to answer the following questions: application, possible
resolutions, number of resolutions, validation, flexible com-
ponentsets, inflexible componentsets, and optimum resolution.
We used a running example, in the context of enterprise
applications and a self-adaptive framework, to demonstrate the
applicability of the model, even in situations where complex
interactions arise between context elements and the target self-
adaptive enterprise application.

As future work, we will extend the model for reasoning on
the process of binding components while they are redeployed
on system infrastructures. We will also implement a support
tool for the model and integrate it into a self-adaptation
infrastructure. Other challenges to face in the near future are
to perform a validations of our implementation with a case
study.

ACKNOWLEDGMENTS

This work has been partially supported by grant 0369-2013
from the Colombian Administrative Department of Science,
Technology and Innovation (Colciencias) under project SHIFT
2117-569-33721. We thank Miguel Jiménez and Gabriel
Tamura for their contributions on the project and the archi-
tecture of the SHIFT framework.

REFERENCES

[1] H. Arboleda, J. F. Dı́az, V. Vargas, and J.-C. Royer, “Automated
reasoning for derivation of model-driven spls,” in SPLC’10 MAPLE’10,
2010, pp. 181–188.

[2] IBM, “An architectural blueprint for autonomic computing,” IBM White
Paper, 2006.

[3] P. Tessier, S. Gérard, F. Terrier, and J. M. Geib, “Using Variation
Propagation for Model-Driven Management of a System Family,” ser.
LNCS 3714, 2005, pp. 222–233.

[4] H. Arboleda, R. Casallas, and J.-C. Royer, “Dealing with Fine-Grained
Configurations in Model-Driven SPLs,” in Proc. of the SPLC’09. San
Francisco, CA, USA: Carnegie Mellon University, Aug. 2009, pp. 1–10.

[5] C. Moore, M. Xue Wang, and C. Pahl, “An architecture for autonomic
web service process planning,” in Emerging Web Services Technology
Volume III, ser. Whitestein Series in Software Agent Technologies and
Autonomic Computing, W. Binder and S. Dustdar, Eds. Birkhaeuser
Basel, 2010, pp. 117–130.

[6] S. A. McIlraith and T. C. Son, “Adapting golog for composition of
semantic web services,” in Proceedings of the Eighth International
Conference on Principles and Knowledge Representation and Reasoning
(KR-02), Toulouse, France, 2002, pp. 482–496.

[7] M. Beggas, L. Médini, F. Laforest, and M. T. Laskri,
“Towards an ideal service qos in fuzzy logic-based
adaptation planning middleware,” Journal of Systems and
Software, vol. 92, pp. 71 – 81, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121213001738

[8] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic qos management and optimization in service-based
systems,” IEEE Trans. on Software Engineering, vol. 37, no. 3, pp. 387–
409, 2011.

[9] D. Menasce, H. Gomaa, S. Malek, and J. P. Sousa, “Sassy: A framework
for self-architecting service-oriented systems,” IEEE Software, vol. 28,
no. 6, pp. 78–85, 2011.

[10] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz,
“Dynamic adaptation of service compositions with variability models,”
Systems and Software, vol. 91, no. 1, pp. 24–47, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.jss.2013.06.034

[11] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[12] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

[13] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh,
and A. Vilbig, “A Meta-model for Representing Variability in Product
Family Development,” in Software Product-Family Engineering, 2004,
pp. 66–80.

[14] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic software
product lines,” Computer, vol. 41, no. 4, pp. 93–95, April 2008.

[15] H. Arboleda and J.-C. Royer, Model-Driven and Software Product Line
Engineering, 1st ed. ISTE-Wiley, 2012.

[16] E. Tsang, Foundations of Constraint Satisfaction. Academic Press,
1993.

[17] N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R. Casallas,
“DYNAMICO: A reference model for governing control objectives and
context relevance in self-adaptive software systems,” LNCS, vol. 7475,
pp. 265–293, 2013.

[18] G. Tamura, R. Casallas, A. Cleve, and L. Duchien, “QoS contract preser-
vation through dynamic reconfiguration: A formal semantics approach,”
Science of Computer Programming, vol. 94, pp. 307–332, 2014.

[19] D. Durán and H. Arboleda, “Quality-driven software product
lines,” Master’s thesis, Universidad Icesi, 2014. [Online]. Available:
http://bibliotecadigital.icesi.edu.co/biblioteca digital/handle/10906/77492

[20] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2012.

[21] D. Benavides, A. Ruiz-Cortés, and P. Trinidad, “Automated reasoning
on feature models,” LNCS, Advanced Information Systems Engineering:
17th International Conference, CAiSE 2005, vol. 3520, pp. 491–503,
2005.

[22] J. White, D. Benavides, B. Dougherty, and D. Schmidt, “Automated rea-
soning for multi-step software product line configuration problems,” in
Proceedings of the 13th International Software Product Line Conference
(SPLC’09), San Francisco, US, August 2009, pp. 1–10.

[23] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro,
“Automated error analysis for the agilization of feature modeling,” J.
Syst. Softw., vol. 81, no. 6, pp. 883–896, 2008.

[24] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl,
“GOLOG: A logic programming language for dynamic domains,” The
Journal of Logic Programming, vol. 31, no. 1-3, pp. 59 – 83, 1997,
reasoning about Action and Change.

[25] U. Kuter, E. Sirin, B. Parsia, D. Nau, and J. Hendler, “Information gath-
ering during planning for Web Service composition,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 3, no. 2-3,
pp. 183 – 205, 2005.

[26] L. Baresi and S. Guinea, “Self-supervising bpel processes,” IEEE Trans.
on Software Engineering, vol. 37, no. 2, pp. 247–263, 2011.

[27] N. C. Narendra, K. Ponnalagu, J. Krishnamurthy, and R. Ramkumar,
Run-time adaptation of non-functional properties of composite web
services using aspect-oriented programming. Springer, 2007.

