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Abstract—Image segmentation, such as to extract an object
from a background, is very useful for medical and biological
image analysis. In this work, we propose new methods for
interactive segmentation of multidimensional images, based on
the Image Foresting Transform (IFT), by exploiting for the
first time non-smooth connectivity functions (NSCF) with a
strong theoretical background. The new algorithms provide global
optimum solutions according to an energy function of graph cut,
subject to high-level boundary constraints (polarity and shape), or
consist in a sequence of paths’ optimization in residual graphs.
Our experimental results indicate substantial improvements in
accuracy in relation to other state-of-the-art methods, by allowing
the customization of the segmentation to a given target object.

Keywords—graph cut; image foresting transform; oriented
image foresting transform; non-smooth connectivity function;
geodesic star convexity

I. INTRODUCTION

Image segmentation is one of the most fundamental and
challenging problems in image processing and computer vi-
sion [1]. In medical image analysis, accurate segmentation
results commonly require the user intervention because of
the presence of structures with ill-defined borders, intensity
non-standardness among images, field inhomogeneity, noise,
artifacts, partial volume effects, and their interplay [2], [3].
The high-level, application-domain-specific knowledge of the
user is also often required in the digital matting of natural
scenes, because of their heterogeneous nature [4], [5]. These
problems motivated the development of several methods for
semi-automatic segmentation [6], [7], [8], [9], [10], [11], [12],
aiming to minimize the user involvement and time required
without compromising accuracy and precision.

One important class of interactive image segmentation
comprises seed-based methods, which have been developed
based on different theories, supposedly not related, leading
to different frameworks, such as watershed from markers [9],
[13], [14], random walks [15], fuzzy connectedness [16], [11],
graph cuts [7], [17], distance cut [4], image foresting transform
(IFT) [18], and grow cut [19]. The study of the relations among
different frameworks, including theoretical and empirical com-
parisons, has a vast literature [20], [21], [22], [23]. However,
these methods in most studies are restricted to undirected
graphs, and the most time-efficient methods, including the IFT,
present a lack of boundary regularization constraints. More-
over, the quality of their segmentation results with minimal

user intervention, strongly depends on an adequate estimate of
the weights assigned to the graph’s arcs [24].

The main contribution of this work is a theoretical de-
velopment to support the usage of non-smooth connectivity
functions (NSCF) in the IFT, opening new perspectives in the
research of image processing using graphs, since NSCF were,
until now, avoided in the literature. More specifically, we prove
that some NSCF can lead to optimum results according to
a graph-cut measure on a digraph [25], [26] or consist in a
sequence of paths’ optimization in residual graphs. We have
as main results:

1) The customization of the segmentation by IFT to
match the global and local features of a target object:

(a) The design of more adaptive and flexible con-
nectivity functions, which allow better han-
dling of images with strong inhomogeneity by
using dynamic weights.

(b) The orientation of the object’s intensity tran-
sitions, i.e., bright to dark or the opposite
(boundary polarity).

(c) The shape constraints to regularize the seg-
mentation boundary (geodesic star convexity
constraint).

2) The development of an interactive segmentation tool
within the software, called Brain Image Analyzer
(BIA), to support research in neurology involving vol-
umetric magnetic resonance images of a 3T scanner
from the FAPESP-CInApCe (Figure 1).

3) A total of four conference papers were published in
international events of high regard [26], [27], [28],
[29], and one journal paper was published in the IEEE
Transactions on Image Processing (impact factor:
3.111) [25].

For the sake of completeness in presentation, Section II
includes the relevant previous work of image segmentation
by IFT. In Sections III, IV, V and VI, we present the main
contributions covered in the master’s dissertation [30]: The
classification of NSCF, the use of adaptive weights via NSCF,
the boundary polarity through digraphs, and the elimination
of false delineations by shape constraints. Our conclusions are
stated in Section VII.



Fig. 1. Example of an interactive segmentation in progress of multiple objects in a 3D MRI image for user-selected markers using the software Brain Image
Analyzer (BIA).

II. IMAGE FORESTING TRANSFORM (IFT)

An image 2D/3D can be interpreted as a weighted digraph
G = 〈V = I, ξ, ω〉 whose nodes V are the image pixels in its
image domain I ⊂ ZN , and whose arcs are the ordered pixel
pairs (s, t) ∈ ξ (e.g., 4-neighborhood, or 8-neighborhood, in
case of 2D images, and 6-neighbors in 3D). The digraph G is
symmetric if for any of its arcs (s, t), the pair (t, s) is also an
arc of G. We have an undirected graph when ω(s, t) = ω(t, s)
in a symmetric graph G. We use (s, t) ∈ ξ or t ∈ ξ(s) to
indicate that t is adjacent to s. Each arc (s, t) ∈ ξ may have
a weight ω(s, t) ≥ 0, such as a dissimilarity measure between
pixels s and t (e.g., ω(s, t) = |I(t)−I(s)| for a single channel
image with values given by I(t)).

For a given image graph G, a path πt = 〈t1, t2, . . . , tn = t〉
is a sequence of adjacent pixels with terminus at a pixel t. A
path is trivial when πt = 〈t〉. A path πt = πs · 〈s, t〉 indicates
the extension of a path πs by an arc (s, t). The notation
πs t = 〈t1 = s, t2, . . . , tn = t〉 may also be used, where s
stands for the origin and t for the destination node.

A predecessor map is a function P that assigns to each
pixel t in V either some other adjacent pixel in V , or a
distinctive marker nil not in V — in which case t is said
to be a root of the map. A spanning forest is a predecessor
map which contains no cycles — i.e., one which takes every
pixel to nil in a finite number of iterations. For any pixel
t ∈ V , a spanning forest P defines a path πP

t recursively as
〈t〉 if P (t) = nil, and πP

s · 〈s, t〉 if P (t) = s 6= nil.

A connectivity function computes a value f(πt) for any
path πt, usually based on arc weights. A path πt is optimum
if f(πt) ≤ f(τt) for any other path τt in G. By taking to
each pixel t ∈ V one optimum path with terminus t, we
obtain the optimum-path value V (t), which is uniquely defined
by V (t) = min∀πt in G{f(πt)}. A path πtn = 〈t1, t2, . . . , tn〉

is complete optimum if all paths πti = 〈t1, t2, . . . , ti〉, i =
1, 2, . . . , n are optimum paths.

The IFT takes an image graph G, and a path-cost function
f ; and assigns one optimum path πt to every pixel t ∈ V such
that an optimum-path forest P is obtained — i.e., a spanning
forest P where all paths πP

t , t ∈ V , are optimum. However, f
must be smooth (Definition 1), otherwise, the paths may not
be optimum [18].

Definition 1 (Smooth path-cost function). A path-cost function
f is smooth if for any pixel t ∈ I , there is an optimum path
πt, which either is trivial, or has the form πs · 〈s, t〉 where

(C1) f(πs) ≤ f(πt),
(C2) πs is optimum,
(C3) C2 is valid and for any optimum path π′

s ending at
s, f(π′

s · 〈s, t〉) = f(πt).

The cost of a trivial path πt = 〈t〉 is usually given by
a handicap value H(t), while the connectivity functions for
non-trivial paths follow a path-extension rule. For example:

fmax(πt = πs · 〈s, t〉) = max {fmax(πs), ω(s, t)} (1)

fsum(πt = πs · 〈s, t〉) = fsum(πs) + ω2(s, t) (2)

fω(πt = πs · 〈s, t〉) = ω(s, t) (3)

where ω(s, t) ≥ 0 and ω2(s, t) ≥ 0 are fixed arc weights.

We consider image segmentation from two seed sets, So

and Sb (So ∩ Sb = ∅), containing pixels selected inside and
outside the object, respectively. The search for optimum paths
is constrained to start in S = So ∪ Sb (i.e., H(t) = 0 for all
t ∈ S, and H(t) = +∞ otherwise). The image is partitioned
into two optimum-path forests — one rooted at the internal



seeds, defining the object, and the other rooted at the external
seeds, representing the background. A label, L(t) = 1 for all
t ∈ So and L(t) = 0 for all t ∈ Sb, is propagated to all
unlabeled pixels during the computation [18].

In the IFT, the optimum-path forest may not be unique [18].
For example, if two or more seeds lead to a pixel t through
optimum paths with the same cost , then more than one forest
may be optimum. Paths πr1 t and τr2 t with the same label
(i.e., {r1, r2} ⊂ So or {r1, r2} ⊂ Sb) are not a problem,
because they lead to the same segmentation result and any
solution is satisfactory. For paths with different labels, we have
the basis of the real tie zones. The tie zones are the maximal set
of tie-zone pixels 1, which forms a subtree in some optimum-
path forest [31].

III. IFT WITH NON-SMOOTH CONNECTIVITY FUNCTIONS

Clearly, from Definition 1, we have that a connectivity
function is not smooth if it doesn’t satisfy at least one of the
conditions C1, C2 or C3. For example the functions fΣmax,
f∑ |△I|, fmax |△I|, fl and f bkgmax

2 violate C2 and C3:

fΣmax(πt = 〈t〉) =

{

0, if t ∈ S,
+∞, otherwise.

fΣmax(πt = πs · 〈s, t〉) = fΣmax(πs) + fmax(πt) (4)

f∑ |△I|(πt = 〈t〉) =

{

0, if t ∈ S,
+∞, otherwise.

f∑ |△I|(πt = πr s · 〈s, t〉) = f∑ |△I|(πr s) + |I(t)− I(r)|

(5)

fmax |△I|(πt = 〈t〉) =

{

0, if t ∈ S,
+∞, otherwise.

fmax |△I|(πt = πr s · 〈s, t〉) = max {fmax |△I|(πr s),

|I(t)− I(r)|} (6)

fl(πt = 〈t〉) =

{

0, if t ∈ S,
+∞, otherwise.

fl(πt = πs · 〈s, t〉) = fImax(πt)− fImin(πt) (7)

where fImax and fImin are functions that take the maximum
and minimum intensity values along the path, respectively:

fImax(πt = 〈t〉) = I(t)

fImax(πt = πs · 〈s, t〉) = max {fImax(πs), I(t)} (8)

and

fImin(πt = 〈t〉) = I(t)

fImin(πt = πs · 〈s, t〉) = min {fImin(πs), I(t)} (9)

1A pixel t is a tie-zone pixel if there exist two complete optimum paths
πr1 t and τr2 t such that r1 ∈ Sb and r2 ∈ So.

2The function f
bkg
max incorporates a tie-breaking rule inside its path-value

definition to resolve ties of the function fmax (Equation 1) by favoring
background seeds. Since this is the same behavior exhibited by the Iterative

Relative Fuzzy Connectedness (IRFC), the formulation of f
bkg
max corresponds

to an alternative IFT-based codification for the IRFC method [32].

where I(t) is the intensity of a pixel t.

f bkgmax(πt = 〈t〉) =

{

−1 if t ∈ So ∪ Sb

+∞ otherwise

f bkgmax(πt = πr s · 〈s, t〉) =

{

Expr1 if r ∈ So

Expr2 if r ∈ Sb
(10)

Expr1 = max{f bkgmax(πr s), 2× ω(s, t) + 1}

Expr2 = max{f bkgmax(πr s), 2× ω(s, t)}

In [29], we formally classified several non-smooth func-
tions according to the conditions C1, C2 and C3 (Definition 1),
and C4 (Definition 2).

Definition 2 (Condition C4). A path-value function f satisfies
the condition C4, if for any node s ∈ I the following condition
is verified ∀t ∈ ξ(s):

• For any paths πs and π′
s ending at s, if f(πs) = f(π′

s),
then we have f(πs · 〈s, t〉) = f(π′

s · 〈s, t〉).

For a general image graph, the classification of various
non-smooth functions into the sets C1, C2, C3, and C4 (such
that a function f is in a set Ci if and only if it satisfies the
condition Ci) is shown in the proposed diagram illustrated in
Figure 2. The functions f	ω , fi,ω and fo,ω were studied in [33],
[26], and fI are defined in [29].

Fig. 2. Schematic representation of the relations between smooth and non-
smooth connectivity functions: C1, C2, C3 and C4 are sets of connectivity
functions that satisfy these respective conditions for a general graph.

Some functions in the subset C1 \ (C2

⋃

C4) have cor-
responding variations in the region (C1 ∩ C4) \ C2 of the
diagram. That is possible by using a second cost component
with comparisons in lexicographic order. For example, the
lexicographical function f lexΣmax (Equation 11) is a variation
of the non-smooth function fΣmax (Equation 4).

f lexΣmax(πt = 〈t〉) =

{

(0, 0), if t ∈ S,
(+∞,+∞), otherwise.

f lexΣmax(πt = πs · 〈s, t〉) = (fΣmax(πt), fmax(πt)). (11)



IV. ADAPTIVE WEIGHTS VIA NSCF

Methods based on IFT [18] have been successfully used in
the segmentation of 1.5 Tesla MR datasets [34], [35]. However,
inhomogeneity effects are stronger in higher magnetic fields
(Figure 3), and it is extremely important to define the optimal
solution for these images. NSCFs are more adaptive to cope
with the problems of field inhomogeneity, which are common
in MR images of 3 Tesla [36].

(a) (b) (c)

(d) (e) (f)

Fig. 3. Example of field inhomogeneity. (a) The yellow markers +/⊕ indicate
corresponding regions in different tissues of the hemispheres. On the left, the
gray and white matter show intensity values of 57 and 145, respectively, for
the selected points. In the right region of the image, we have considerably
higher values, 109 and 221. (a-c) By varying the brightness and contrast
configurations, it is possible to better observe the problem. (d-f) Variations
of brightness and contrast in an axial slice, revealing the inhomogeneity.

In order to give a theoretical foundation to support the
usage of NSCF, we theoretically proved that the IFT with
any non-smooth function f ∈ (C1 ∩ C4) \ C2 is, in fact,
equivalent to the result of a sequence of optimizations, each
of them involving a maximal set of elements, in a well-
structured way [29]. This proof was supported by the following
proposition:

Proposition 1. Consider a function f ∈ (C1 ∩C4) \C2. For
a given image graph G = 〈V , ξ, ω〉, and set of seeds S, let O
be the set of all pixels t ∈ V , such that there exists a complete-
optimum path πt for f . In any spanning forest P computed in
G by the IFT algorithm for f , all the paths τPt with t ∈ O
are optimum paths.

Consider the following definitions: Let
ξset(X) = {(s, t) ∈ ξ | s ∈ X ∧ t ∈ X} denote the
set of all arcs interconnecting nodes in the set
X , ξpath(π) denote the set of all arcs in the
path π (i.e., ξpath(π) = {(ti, ti+1) for 1 ≤
i ≤ k − 1| π = 〈t1, t2, . . . , ti, ti+1, . . . , tk〉}),
ξcut(X,Y ) = {(s, t) ∈ ξ|s ∈ X ∧ t ∈ Y },
ξpred(X) =

⋃

∀t∈X ξpath(πP
t ).

In the first optimization step, optimum paths τPt are
computed for all t ∈ O (Proposition 1). Let’s denote O as
O1 for this first step. In the next optimization step, consider
the subgraph G2 = 〈I, ξset(I \ O1) ∪ ξcut(O1,I \ O1) ∪

ξpred(O1), ω〉. A second path optimization is performed, by
computing a second IFT, but now in G2 3. Since the arcs
interconnecting nodes in O1, are reduced to the arcs in the
previous forest P (i.e., ξpred(O1)) in G2, we have that the
optimum paths τPt , computed on the previous step, will remain
optimum in the new graph G2. So the optimum paths τPt with
t ∈ O1 will start a new competition, seeking for their best
extensions to the other pixels in I \ O1. By applying the
Proposition 1 on this new optimization problem one more time,
we have that this second IFT will conquer a new maximal set
of pixels O1∪O2 that can be reached by optimum paths in G2.
We can then repeat this process over again. The condition C14

guarantees that at least one new element will be conquered at
each step, so that this process will repeat until

⋃

∀i O
i = I .

Figure 4 shows an example of the ordered process about the
sequence of optimizations for a non-smooth function f lexΣmax ∈
(C1

⋂

C4)�C2.

Figure 5 shows an example about the benefits of the
non-smooth function fmax |△I| (Equation 6) compared to the
smooth connectivity function fmax (Equation 1) in image
segmentation with inhomogeneity problem. Note that the func-
tion fmax |△I| is more adaptive to cope with problems of
inhomogeneity, by offering adaptive weights to the pixels in
the image graph.

In our experiments, we used 10 T1-weighted 3D images of
male and female adults with normal brains. The image dataset
included the head and, at least, a small portion of the neck.
Our experimental result, using a robot user 5 for segmenting the
brain dataset, indicates that substantial improvements can be
obtained by NSCFs in the 3D segmentation of MR images of
3 Tesla, with strong inhomogeneity effects, when compared to
smooth connectivity functions. That is because NSCFs permit
a more adaptive configuration of the arc weights.

Figure 6 shows the experimental curves, where IRFC [16]
and PWq=2 [23] represent different algorithms related to the
smooth function fmax, and we used ω(s, t) = G(s) + G(t),
where G(s) is the magnitude of Sobel gradient at a voxel
s. Clearly, f lex∑

|△I| presented the best accuracy. Figures 7

and 8 show examples for user-selected markers. These re-
sults emphasize the importance of non-smooth connectivity
functions. The non-smooth connectivity function f lex∑

|△I| is a

variation of f∑ |△I| (Equation 5), in order to guarantee that

f lex∑
|△I| ∈ (C1∩C4)\C2. The function f lex∑

|△I| gives pairs of

values that should be compared according to the lexicograph-
ical order. The first component is the non-smooth function
f∑ |△I| (Equation 5), and the second is the priority level of
the seed/root for that path. The lower its value the higher is its
priority. In interactive segmentation, we give lower priority for
new inserted seeds, since they are used mainly for corrective
actions, so that we can keep their effects more locally. The
same process was done for f lexmax |△I| ∈ (C1 ∩C4) \C2 and

f lexl ∈ (C1 ∩C4) \C2, in relation to fmax |△I| (Equation 6)

and fl (Equation 7), respectively [29].

3By IFT algorithm, the pixels s ∈ O1 have a defined status, and their paths
can’t be changed. Therefore, we consider a new graph G2, where the arcs
interconnecting nodes in O1 which are not in the forest P are disregarded.

4By the hypothesis, we know that f satisfies the condition C1.
5Method introduced in [37], to simulate user interaction of interactive

segmentation.



(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) An image graph G using 4-neighbors for pixel adjacency and seeds S = {s1, s2}, where the numbers in the arcs represent their weights.
(b) Spanning forest computed by the IFT with a non-smooth function f lex

Σmax
∈ (C1

⋂
C4)�C2. The numbers inside the nodes indicate values of the

path-value map V with two components in lexicographical order. In this figure the arrows indicate the predecessor map. (c) Note that the path πs1 a is a
complete-optimum path, but the path πs1 b is not optimum, since that there is another path π′

s2 b
, following the dashed line, offering a better cost (i.e.,

f lex
Σmax

(π′
s2 b

) = (11; 3) < f lex
Σmax

(πs1 b) = (12; 5)). This shows that the function f lex
Σmax

is not smooth. (d) By applying the Proposition 1 we have a

forest computed for the set O1, composed of optimum paths in the graph G (i.e., first optimization). (e) We have the residual graph G2, which will be used in
a second optimization. (f) Optimum forest computed from the graph G2, ending the process with O1

⋃
O2 = I .



(a)

(b) (c)

(d) (e)

Fig. 5. (a) Synthetic image with problem of inhomogeneity. The target object for the image segmentation is the central object with elliptical shape. The
user-selected markers are the seeds So and Sb. The numbers are some representative arc values ω(s, t) depicted for each region and border segment. (b-c)
Schematic representation of the path costs f offered by the seeds for the pixels in the image using the smooth function fmax and the segmentation result. (d-e)
Schematic representation of the path costs f offered by the seeds for the pixels in the image using the non-smooth function fmax |△I| and the segmentation
result. The values inside of the nodes represent the intensities of the pixels.
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Fig. 6. Results using a robot user for segmenting the 3D brain dataset.
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Fig. 7. Brain segmentation results for the same user-selected markers by (a-d) fmax, and (e-h) f lex∑
|△I|.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. White matter segmentation in 3D for the same user-selected markers. Results by (a-d) fmax over an enhanced gradient, and (e-h) f lex∑
|△I|.



V. BOUNDARY POLARITY VIA NSCF

Boundary-based segmentation methods such as like live
wire [6], [10], can easily incorporate boundary orientation
to resolve between very similar nearby boundary segments
(Figure 9), by favoring segmentation on a single orientation
(e.g., counter-clockwise orientation).

(a) (b)

Fig. 9. Example of boundary-based segmentation, where the boundary-
orientedness property of live wire helps it to distinguish between two similar
boundary segments from the distinct objects A and B [38].

In [25], [26] we successfully incorporated the boundary
polarity constraint in the IFT using NSCF in digraphs, resulting
in a novel method called Oriented Image Foresting Transform
(OIFT).

In the case of digraphs, there are two different types of cut
for each object boundary: an inner-cut boundary composed by
arcs that point toward object pixels Ci(L) (Figure 10a) and an
outer-cut boundary with arcs from object to background pixels
Co(L) (Figure 10b).

Ci(L) = {(s, t) ∈ ξ | L(s) = 0, L(t) = 1} (12)

Co(L) = {(s, t) ∈ ξ | L(s) = 1, L(t) = 0} (13)

(a) (b)

Fig. 10. Schematic representation of (a) inner cuts and (b) outer cuts.

Consequently, we consider two different types of energy,
Ei (Equation 14) and Eo (Equation 15).

Ei(L,G) = min
(s,t) ∈ Ci(L)

ω(s, t) (14)

Eo(L,G) = min
(s,t) ∈ Co(L)

ω(s, t) (15)

We use a digraph, where ω(s, t) is a combination of a
regular undirected dissimilarity measure ψ(s, t), multiplied by
an orientation factor, as follows:

ω(s, t) =

{

ψ(s, t)× (1 + α) if I(s) > I(t),
ψ(s, t)× (1− α) otherwise.

(16)

Several different procedures can be adopted for ψ(s, t), such
as the absolute value of the difference of image intensities (i.e.,
ψ(s, t) = |I(t) − I(s)|). Note that we have ω(s, t) 6= ω(t, s)
when α > 0.

The OIFT is build upon the IFT framework by considering
one of the following path functions in a symmetric digraph:

f
bkg
i,max(〈t〉) =

{

−1 if t ∈ So ∪ Sb

+∞ otherwise

f
bkg
i,max(πr s · 〈s, t〉) =

{

Expr1 if r ∈ So

Expr2 if r ∈ Sb
(17)

Expr1 = max{f bkgi,max(πr s), 2× ω(t, s) + 1}

Expr2 = max{f bkgi,max(πr s), 2× ω(s, t)}

f bkgo,max(〈t〉) =

{

−1 if t ∈ So ∪ Sb

+∞ otherwise

f bkgo,max(πr s · 〈s, t〉) =

{

Expr1 if r ∈ So

Expr2 if r ∈ Sb
(18)

Expr1 = max{f bkgo,max(πr s), 2× ω(s, t) + 1}

Expr2 = max{f bkgo,max(πr s), 2× ω(t, s)}

fi,ω(〈t〉) =

{

−1 if t ∈ So ∪ Sb

+∞ otherwise

fi,ω(πr s · 〈s, t〉) =

{

ω(t, s) if r ∈ So

ω(s, t) if r ∈ Sb
(19)

fo,ω(〈t〉) =

{

−1 if t ∈ So ∪ Sb

+∞ otherwise

fo,ω(πr s · 〈s, t〉) =

{

ω(s, t) if r ∈ So

ω(t, s) if r ∈ Sb
(20)

Figure 11 shows an example demonstrating that the func-
tion f bkgo,max is not smooth.

Fig. 11. The function f
bkg
o,max process reversed edges for paths from Sb.

Suppose that Sb conquers the left white region with 0 cost, since its pixels
are interconnected by 0-weighted arcs. The pixels within the gray region have
also 0-weighted arcs, so So provides better costs to them (2 × 0 + 1 = 1
against 2×1 = 2 offered by Sb). The best cost offered by So to the node b is
2×8+1 = 17, while Sb could have provided a better cost to b (2×1 = 2),
but b is assigned to the object. Thus, the function is not smooth.



The segmentation using f
bkg
i,max or fi,ω favors transitions

from dark to bright pixels, and f bkgo,max or fo,ω favors the
opposite orientation (Figure 12), according to Theorem 1. In
the case of multiple candidate segmentations with the same
energy, fi,ω and fo,ω produces a better handling of the tie

zones than f
bkg
i,max and f bkgo,max, respectively (Figure 13) [26].

(a) (b)

(c) (d)

(e) (f)

Fig. 12. (a) A synthetic image with internal and external seeds (So and
Sb). Some representative arc values ω(s, t) are depicted for each region
and border segment. (b) Arc values ω(s, t) for border segments according to
Equation 16 with α = 0.5. (c-d) Transition from dark to bright pixels favors

the segmentation using f
bkg
i,max

and maximizes Ei(L,G). (e-f) Transition from

bright to dark pixels favors the segmentation using f
bkg
o,max and maximizes

Eo(L,G).

Theorem 1 (Inner/outer-cut boundary optimality). For two
given sets of seeds So and Sb, any spanning forest computed
by the IFT algorithm for function f bkgo,max or fo,ω defines

an optimum cut that maximizes Eo(L,G) among all possi-
ble segmentation results satisfying the hard constraints. Any
spanning forest computed by the IFT algorithm for function

f
bkg
i,max or fi,ω defines an optimum cut that maximizes Ei(L,G)

among all possible segmentation results satisfying the hard
constraints.

In our experiments, we used four 2D datasets, to segment
different objects in MRI and CT slice images; two 3D datasets
of MR images and one dataset of colored images. In the first
experiment, we used 40 slice images from real MR images of
the foot, and we computed the mean performance curve for

the functions f bkgmax, f bkgo,max and f
bkg
i,max, to segment the talus

bone, for different seed sets obtained by eroding and dilating
the ground truth, as shown in Figure 14a-b. For the second

(a) (b) (c)

Fig. 13. (a) Input image with equally weighted transitions, having the same

orientation. (b) The OIFT result using f
bkg
o,max as proposed in [25] assigns

the ambiguous regions to the background. (c) OIFT using fo,ω with a FIFO

tie-breaking policy gives more equally balanced partitions.

(a) (b)

(c) (d)

Fig. 14. (a) True segmentation of the talus in an MR image of a foot. (b) Seed
sets obtained by eroding and dilating the true segmentation. (c) Segmentation
result by IRFC. (d) An improved segmentation result is obtained by exploiting

the boundary orientation using f
bkg
i,max

.

dataset, we performed the segmentation of the calcaneus for
all the connectivity functions, using 40 slices from MR images
of the foot. In the third experiment, 40 slice images were
selected from CT cervical spine studies of 10 subjects to
segment the spinal-vertebra. Finally, 40 slice images from CT
thoracic studies of 10 subjects were used to segment the liver.
This gave us a total of 160 2D-images to be processed by
each function. The experimental accuracy curves are given in
Figures 15, 16, 17 and 18, which show that whenever the object

presents transitions from dark to bright pixels f
bkg
i,max gives the

best accuracy results, and whenever there are transitions from
bright to dark pixels f bkgo,max obtains the top accuracy. Note

also that f
bkg
i,max gives the best results when f bkgo,max presents the

worst accuracy, and vice versa. This means that by specifying
the wrong orientation, it becomes even harder to get the desired
boundary as compared to the undirected approach f bkgmax, as we
expected.

In the 3D experiments, first we used a dataset of 3D MRI
images, composed of brain images of 20 normal subjects.
We performed the 3D segmentation of the cerebelum for the

functions f bkgmax, f
bkg
i,max and f bkgo,max in all volumes. Figure 19

shows the obtained results, which indicate that f bkgo,max improves
the accuracy.

Second, we used 20 real volumetric MR images of the
foot in 3D. We computed the mean performance curve (Dice



Method Description Graph Type

IRFC Iterative Relative Fuzzy Connectedness [16] undirected graph

IFTmax

FIFO Traditional IFT with fmaxand FIFO tie-breaking policy, as described in [18] undirected graph

PWq=2 The power watershed algorithm [23] undirected graph

OIFTmax

inner OIFT result using f
bkg
i,max

weighted digraph

OIFTmax

outer OIFT result using fbkg
o,max

weighted digraph

OIFTω
inner OIFT using fi,ω weighted digraph

OIFTω
outer OIFT using fo,ω weighted digraph

TABLE I. DESCRIPTION OF THE METHODS USED IN THE EXPERIMENTS.
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Fig. 15. The mean accuracy curves for f
bkg
max (normal), f
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(inner),

f
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o,max (outer) for the segmentation of talus.
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Fig. 16. The mean accuracy curves for f
bkg
max (normal), f

bkg
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(inner),

f
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o,max (outer) for the segmentation of calcaneus.
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Fig. 17. The mean accuracy curves for f
bkg
max (normal), f

bkg
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(inner),

f
bkg
o,max (outer) for the segmentation of spinal-vertebra.
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Fig. 18. The mean accuracy curves for f
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max (normal), f
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(inner),
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o,max (outer) for the segmentation of liver.
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Fig. 19. Mean accuracy curves for f
bkg
max (normal), f

bkg
i,max

(inner), f
bkg
o,max

(outer) for the 3D segmentation of the cerebellum.

coefficient) for all the methods depicted on Table I [26].
The experimental accuracy curves with the Sobel gradient
(Figure 20) show that whenever the object presents transitions
from dark to bright pixels, as it is the case with the bones talus

and calcaneus, f i,ω and f
bkg
i,max give the best accuracy results.

Note also that f bkgo,max and fo,ω present the worst accuracy
values, by specifying the wrong orientation.

In the experiment with colored images, we used 50 natural
images with known true segmentations obtained from [39]. The
arc weights were computed by the method proposed in [24],
using a few manual-selected training markers to estimate the
color models. Figure 21 shows the experimental curves, where
fo,ω provided better mean results. Note that fi,ω presented the
worst accuracy values in this case, since it considers the wrong
boundary orientation.
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Fig. 20. The mean accuracy curves (Dice) using the Sobel gradient for the
3D segmentation of: (a) talus, and (b) calcaneus.
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Fig. 21. The mean accuracy curve for different methods using color images.

VI. SHAPE CONSTRAINTS VIA NSCF

Structures poorly defined in medical images, as well as
natural images, are often hard to be segmented due to their
low contrast in relation to other nearby false boundaries (Fig-
ure 22). The usage of shape constraints can help to alleviate
part of this problem for objects that have a more regular shape.

(a) (b) (c)

Fig. 22. (a) MR image of the brain (object with regular shape). (b) Image
gradient. (c) Segmentation result of the brain by IFT with fmax, which outputs
a very irregular shape.

Shape constraints, such as the star-convexity prior intro-
duced by Veksler [40], can limit the search space of possible
delineations to a smaller subset, thus eliminating false candi-
date boundaries. In this context, a point p is said to be visible
to c via a set O if the line segment joining p to c lies in the
set O. An object O is star-convex with respect to center c, if
every point p ∈ O is visible to c via O (Figure 23). In the
case of multiple stars, a computationally tractable definition,
was proposed in [37], using a Geodesic Star Convexity (GSC)
constraint in the segmentation by min-cut/max-flow.

(a) (b)

Fig. 23. For any point p within the object and the star center c, we have:
(a) a star-convex object and (b) a non-star-convex object.

In [27], we proposed a new algorithm (Algorithm 1) that
incorporates the GSC constraint in the energy maximization
by IFT [31], favoring the segmentation of objects with more
regular shape, resulting in a novel method called IFT with
Geodesic Star Convexity Constraints (GSC–IFT). In this
method, the set of star centers is taken as the set of internal
seeds (So), and the line segments are the paths that form a
spanning forest rooted at the internal seeds. The arc weights
ω2(s, t) in the path-extension rule for fsum (Equation 2) are
given by:

ω2(s, t) = [ω(s, t) + 1]
β − 1 + ‖t− s‖ (21)

where ‖t− s‖ is the Euclidean distance between pixels s and
t, and β controls the forest topology.

For lower values of β (β ≈ 0.0), ω2(s, t) approaches ‖t−
s‖, and the forest topology becomes similar to the Euclidean
shortest-path forest (Figure 24a). For higher values, [ω(s, t)+
1]β dominates the expression, and the greater the intensity-
based dissimilarity, the greater is its influence over the results
(Figure 24b-d).

Figure 25 shows how the parameter β affects the forest
for fsum, and its corresponding segmentation with shape
constraints. Clearly, for lower values of β the method imposes
more star regularization to the object’s boundary, while for
higher values of β, it allows a better fit to the curved protru-
sions and indentations of the boundary.



(a) (b)

(c) (d)

Fig. 24. The effects of the power parameter β over the forest topology: The
optimum-path forest of fsum for: (a) β = 0.0, (b) β = 0.3, (c) β = 0.4,
and (d) β = 0.5.

(a) (b)

(c) (d)

(e) (f)

Fig. 25. The effects of the power parameter β over the forest topology: (a)
The optimum-path forest of fsum for β = 0, and (b) its resulting segmentation
by the GSC–IFT algorithm (Algorithm 1). Similar results for: (c-d) β = 0.3,
and (e-f) β = 0.5.

Algorithm 1 obtains a segmentation that maximizes a
graph-cut measure among all possible segmentation results
satisfying the shape constraints by Geodesic Star Convexity
(GSC), whose theoretical proof of its optimality has been
proved in [27]. In its first step (Line 1), the optimum forest
Psum for fsum (Equation 2) is computed by invoking the
regular IFT algorithm, using only So (set of star centers) as
seeds. The subsequent Lines 2–8 are similar to the original

IFT with fω (Equation 3). The differences arise from this point
(Lines 9–12).

Algorithm 1. – GSC-IFT ALGORITHM

INPUT: Graph G = 〈I, ξ, ω〉, and seed sets So and Sb.
OUTPUT: Minimum path-value map V , and label map L.
AUXILIARY: Optimum-path forest Psum, priority queue Q, vari-

able tmp, and an array of status.

1. Compute Psum ← IFT (G,So, ∅, fsum).
2. For each t ∈ So, do L(t)← 1.
3. For each t ∈ Sb, do L(t)← 0.
4. For each t ∈ I , do

5. Set V (t)← fω(〈t〉), and set status(t)← 0.
6. If V (t) 6= +∞, then insert t in Q.
7. While Q 6= ∅, do

8. Remove s from Q such that V (s) is minimum.
9. If L(s) = 1, then

10. Conquer Path(s,G, Psum, V,Q, L, status).
11. Else If L(s) = 0, then

12. Prune Tree(s,G, Psum, V,Q, L, status).

Algorithm 2. – CONQUER PATH ALGORITHM

INPUT: Image pixel s ∈ I , image graph G = 〈I, ξ, ω〉,
optimum-path forest Psum, value map V , priority
queue Q, label map L, and an array of status.

1. x← s.
2. do

3. If x ∈ Q, then Remove x from Q
4. Set status(x)← 1 , L(x)← 1 .
5. For each y ∈ ξ(x), such that status(y) 6= 1, do

6. Compute tmp← fω(πx · 〈x, y〉).
7. If tmp < V (y) and y 6= Psum(x), then

8. If y ∈ Q, then remove y from Q.
9. Set V (y)← tmp, L(y)← 1 .
10. Insert y in Q.
11. Set x← Psum(x).
12. While (x 6= nil and status(x) 6= 1)

Algorithm 3. – PRUNE TREE ALGORITHM

INPUT: The same parameters as in Algorithm 2.
AUXILIARY: FIFO queue QFIFO , variable tmp, and x.

1. x← s.
2. If x ∈ Q, then Remove x from Q
3. Set status(x)← 1 , L(x)← 0, and insert x in QFIFO .
4. While QFIFO 6= ∅
5. Remove x from QFIFO .
6. For each y ∈ ξ(x), such that status(y) 6= 1, do

7. If Psum(y) = x, then

8. insert y in QFIFO

9. If y ∈ Q, then remove y from Q
10. Set status(y)← 1, L(y)← 0
11. Else

12. Compute tmp← fω(πx · 〈x, y〉).
13. If tmp < V (y), then

14. If y ∈ Q, then remove y from Q.
15. Set V (y)← tmp, L(y)← 0 .
16. Insert y in Q.

Figure 26 shows an example of image segmentation using
the GSC–IFT algorithm (Algorithm 1).



(a) (b)

(c) (d)

(e) (f)

Fig. 26. (a) Synthetic image with three possible boundary cuts, where so e sb are seeds of the object and background, respectively; and the forest Psum

permits the visibility of the shape constraints. The target object has a regular shape. (b) After the pixel a leaves of the queue Q with label 1, we have the
violation of visibility of the pixel a respect to its closest seed so. (c) The subroutine ConquerPath (Algorithm 2) assigns label 1 to all his predecessors, allowing
the expansion of the object paths in light gray region. (d) The pixel b leaves of the queue Q with label of the background, blocking the visibility of their
descendants in Psum respect to so. (e) The subroutine PruneTree (Algorithm 3) assigns label 0 to their descendants, allowing the expansion of the background
paths in the dark gray region. (f) Segmentation result (dashed yellow line) with the GSC–IFT algorithm corresponds with the characteristic of the target object.



In Figures 27 and 28 we present examples of the talus and
breast segmentation, respectively. Figure 29 shows an example
of 3D segmentation from user-selected markers in MR-T1
images, where the graph’s nodes are the voxels, and the arcs
are defined between 6-neighbors. Figure 30 shows some results
for colored images, with the arc weights computed as in [24].
It is quite clear the advantages of considering the GSC–IFT
method.

(a) (b)

Fig. 27. Segmentation of the talus in a MR image of a foot for the selected
markers: (a) IRFC. (b) An improved result by GSC-IFT (β = 0.5).

(a) (b)

(c) (d)

Fig. 28. (a) True segmentation of the breast in MRI. (b) Example of seed
sets obtained by eroding and dilating the true segmentation. (c) Segmentation
result by IRFC. (d) An improved result is obtained by exploiting the Geodesic
Star Convexity (GSC-IFT).

Later, in [28] we proposed the novel method called OIFT
with Geodesic Star Convexity (GSC–OIFT), which incorporate
Gulshan’s geodesic star convexity prior in the OIFT approach
for interactive image segmentation, in order to simultaneously
handle boundary polarity and shape constraints (Theorem 2).
This method permits the customization of the segmentation by
IFT to better match the features of a particular target object
(Figure 31). We constrain the search for optimum result, that

(a) (b)

(c) (d)

Fig. 29. Example of 3D skull stripping from user-selected markers. (a-b)
Segmentation result by IFT with fmax. (c-d) An improved result is obtained
by exploiting the Geodesic Star Convexity (GSC–IFT with β = 0.1).

maximize the graph-cut measures Ei (Equation 14) or Eo

(Equation 15), only to segmentations that satisfy the geodesic
star convexity constraint. We compute a geodesic forest Psum

for fsum (Equation 2) by the regular IFT algorithm, using
only So as seeds, for the given digraph G, obtaining two
sets of arcs ξiPsum

(Equation 22) and ξoPsum
(Equation 23).

The GSC constraint is violated when Ci(L) ∩ ξiPsum
6= ∅ or

Co(L) ∩ ξoPsum
6= ∅ (Figure 32).

Theorem 2 (Inner/outer-cut boundary optimality). For a given
image graph G = 〈V , ξ, ω〉, consider a modified weighted
graph G′ = 〈V , ξ, ω′〉, with weights ω′(s, t) = −∞ for all
(s, t) ∈ ξoPsum

, and ω′(s, t) = ω(s, t) otherwise. For two
given sets of seeds So and Sb, the segmentation computed
over G′ by the IFT algorithm for function f bkgo,max defines
an optimum cut in the original graph G, that maximizes
Eo(L,G) among all possible segmentation results satisfying
the shape constraints by the geodesic star convexity, and
the seed constraints. Similarly, the segmentation computed

by the IFT algorithm for function f
bkg
i,max, over a modified

graph G′ = 〈V , ξ, ω′〉; with weights ω′(s, t) = −∞ for all
(s, t) ∈ ξiPsum

, and ω′(s, t) = ω(s, t) otherwise; defines an

optimum cut in the original graph G, that maximizes Ei(L,G)
among all possible segmentation results satisfying the shape
constraints by the geodesic star convexity.

ξiPsum
= {(s, t) ∈ ξ | s = Psum(t)} (22)

ξoPsum
= {(s, t) ∈ ξ | t = Psum(s)} (23)

Figure 33 shows an example of the GSC–OIFT method
with the non-smooth function f bkgo,max.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 30. (a,d,e) Input image with user-selected markers. (b,e,f) Segmentation result by IFT with fmax. (c,f,i) Segmentation result by GSC–IFT (β = 0.1).

(a)

(b) (c) (d) (e)

Fig. 31. (a) Synthetic image with selected markers So and Sb. The target object has a regular shape with transitions from bright to dark in its border.
Segmentation results by: (b) IFT obtains a non-regular shape and wrong orientation, (c) OIFTmax

outer obtains a non-regular shape, (d) GSC–IFT obtains a wrong
orientation and (e) GSC–OIFTmax

outer (simultaneously considering boundary polarity and shape constraints) obtains a correct matching with the characteristics
of the target object.



(a) (b)

Fig. 32. The GSC constraint is violated when: (a) there is an arc (s, t) ∈ Ci(L) ∩ ξi
Psum

, or (b) there is an arc (s, t) ∈ Co(L) ∩ ξo
Psum

.

(a) (b)

(c) (d)

Fig. 33. (a) Synthetic image with three possible boundary cuts with same orientation (bright to dark), forest Psum and internal seed so (star center). The arcs
with value −∞ represent arcs (s, t) ∈ ξo

Psum
, which violate the shape constraints by the GSC. The blue arrows represent outer cuts in the boundaries and

the red (dotted arrows) inner cuts. (b) Pixels are conquered by the internal seed so. (c) Pixels are conquered by the external seed sb. (d) Segmentation result

(yellow line) by GSC–OIFT with f
bkg
o,max.

In our experiments, we used 40 image slices of 10 thoracic
CT studies to segment the liver. Figure 34a shows the mean
accuracy curves for all the images assuming different seed
sets obtained by eroding and dilating the ground truth. Note

that for higher values of β, GSC–OIFT imposes less shape
constraints, so that the accuracy tends to decrease (Figures 34b-
d). Figure 35 shows some results in the case of user-selected
markers for the liver, and Figure 36 shows one example in 3D.
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Fig. 34. The mean accuracy curves of all methods for the liver segmentation for various values of β: (a) β = 0.0, (b) β = 0.2, (c) β = 0.5, and (d) β = 0.7.

(a) (b) (c) (d)

Fig. 35. Results for user-selected markers: (a) IRFC, (b) OIFT (f
bkg
o,max with α = 0.5), (c) GSC–IFT (β = 0.7), and (d) GSC–OIFT (β = 0.7, α = 0.5).

(a) (b) (c)

Fig. 36. Example of 3D skull stripping in MRI: (a) IRFC (IFT with fmax), (b) GSC-IFT (β = 0.3, α = 0.0), and (c) GSC-OIFT (β = 0.3, α = 0.5), for
the same user-selected markers.



VII. CONCLUSION

The proposed extension GSC–OIFT includes the IFT with
fmax, OIFT and GSC–IFT as particular cases, depending on
the configuration of its parameters α and β. Note that the
adaptive functions presented in Section IV can’t be reduced
to a GSC–OIFT computation. Table II presents an useful
classification of the proposed methods in the master’s disser-
tation [30], according to the specific image characteristics.

The theoretical foundation proposed in this work has also
allowed new achievements that were recently published, such
as [41] and [42]. The project also contributed in a FINEP
project (1266/13) in biomedical engineering, CNPq project
(486083/2013-6), and FAPESP project (2012/06911-2).

As future work, we intend to combine the proposed meth-
ods with statistical models to automatically define seeds for
automatic segmentation.
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AL: Los Alamitos: IEEE Computer Society, Aug 2011.

[22] K. Ciesielski, J. Udupa, A. Falcão, and P. Miranda, “A unifying graph-
cut image segmentation framework: algorithms it encompasses and
equivalences among them,” in Proceedings of SPIE on Medical Imaging,
vol. 8314, San Diego, California, USA, 2012.

[23] C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power watersheds: A
unifying graph-based optimization framework,” Transactions on Pattern

Analysis and Machine Intelligence, vol. 99, 2010.

[24] P. Miranda, A. Falcão, and J. Udupa, “Synergistic arc-weight estimation
for interactive image segmentation using graphs,” Computer Vision and

Image Understanding, vol. 114, no. 1, pp. 85–99, 2010.

[25] P. Miranda and L. Mansilla, “Oriented image foresting transform
segmentation by seed competition,” IEEE Transactions on Image Pro-

cessing, vol. 23, no. 1, pp. 389–398, Jan 2014.

[26] L. Mansilla and P. Miranda, “Image segmentation by oriented image
foresting transform: Handling ties and colored images,” in 18th Inter-
national Conference on Digital Signal Processing (DSP). Santorini,
Greece: IEEE, Jul 2013, pp. 1–6.

[27] L. Mansilla, M. Jackowski, and P. Miranda, “Image foresting transform
with geodesic star convexity for interactive image segmentation,” in
IEEE International Conference on Image Processing (ICIP), Mel-
bourne, Australia, Sep 2013, pp. 4054–4058.

[28] L. Mansilla and P. Miranda, “Image segmentation by oriented image
foresting transform with geodesic star convexity,” in Computer Analysis

of Images and Patterns (CAIP), vol. 8047, York, UK, Aug 2013, pp.
572–579.

[29] L. Mansilla, F. Cappabianco, and P. Miranda, “Image segmentation
by image foresting transform with non-smooth connectivity functions,”
in XXVI Conference on Graphics, Patterns and Images (SIBGRAPI).
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