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Abstract—In the last decades, a large number of metrics
has been proposed to compare the performance of different
evolutionary approaches in multi-objective optimization. This
situation leads to difficulties when comparisons among the output
of different algorithms are needed and appropriate metrics must
be selected to perform those comparisons. Hence, no complete
agreement on what metrics should be used exists. This paper
presents a review and analysis of 54 multi-objective-optimization
metrics in the specialized literature, discussing the usage, ten-
dency and advantages/disadvantages of the most cited ones in
order to give researchers enough information when choosing
metrics is necessary. The review process performed in this
work indicates that the hypervolume is the most used metric,
followed by the generational distance, the epsilon indicator and
the inverted generational distance.

I. INTRODUCTION

Evolutionary Algorithms (EAs) proved to be capable of
finding a good approximation to the Pareto optimal front in
Multi-objective Optimization Problems (MOPs) where there
exist two or more conflicting objective functions. In con-
sequence, many EAs have been proposed during the last
decades, giving rise to the need of establishing comparison
methods in order to measure the quality of the solution sets
obtained by different algorithms. In general, the performance
of an EA is evaluated using experimental tests and, as a
consequence, several performance metrics have been defined
for this purpose. Metrics consider mainly three aspects of a
solution set [1]:

« the convergence, i.e. the closeness to the theoretical
Pareto optimal front;

« the diversity: distribution as well as spread; and

e the number of solutions.

Hence, it becomes intuitive to classify metrics considering
the three aspects they account for. Alternatively, metrics usu-
ally are also categorized taking into consideration the number
of solution sets they can simultaneously evaluate. In this
regard, a metric may be unary or binary (h-ary in general)
as will be discussed in Section II.

The real importance of studying metrics resides on their
extended acceptance in the specialized community to perform
experimental studies that are necessary to reflect in some way
the output quality of different algorithms as well as to compare
various approaches. Previous analysis and reviews on metrics
can be found in [1], [2] and [3].

This paper presents a detailed study of performance metrics,
analyzing their usage and behavior throughout last years, ex-
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amining and taking as reference the works published in EMO
(Evolutionary Multi-Criterion Optimization) conferences [4],
[51, [6], [7] and [8]. EMO is one of the most relevant event
specialized in evolutionary multi-objective optimization. The
main motivation behind this study is the lack of research works
that cover in details the usage and tendency of performance
metrics for the multi-objective optimization field, their advan-
tages and disadvantages. In fact, it is important for researchers
in the multi-objective optimization field to know which metrics
are the most convenient to quantify a given behavior. The idea
of this work was born when discussing which metric should
be used to prove the advantages of a new algorithm developed
by some of the authors [9].

The rest of the paper is organized as follows: definitions
and multi-objective optimization concepts are introduced in
Section II. Then, the general methodology followed in this
work and the key research questions are presented in Section
III. Next, Section IV covers the results obtained and the
corresponding analysis considering usage and tendency of per-
formance metrics. Finally, Section V presents the conclusions
and future works.

II. DEFINITIONS

Before analyzing in detail the information concerning the
characteristics, usage and tendency of performance metrics,
we formalize the basic concepts and terms used throughout
the rest of the paper.

A. Decision variables

The decision variables are the numerical quantities for
which values are to be chosen in an optimization problem
[10]. These independent variables can be denoted as x;,
j={1,2...,n}.

Then, a vector x containing n decision variables can be
represented by:

X= [21,To.ce, Tp) T
B. Objective functions

Objective functions are computable functions applied over
the decision variables in order to have some criteria to evaluate
the quality of a certain solution. They can be denoted as
f1(x), fa(x).., fix(x), where K is the number of objective
functions in the optimization problem being solved [10]. Then,
a vector function containing K objective functions can be
represented by:
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F(x) = [f1(x), fo(X)..... [ (x)]"
C. Spaces

An Euclidean n-space is defined as the set of all n-tuples of
real numbers R”. When dealing with MOPs, two Euclidean
spaces are covered [10]:

« the n-dimensional decision space, denoted as €2, in which
decision variables coexist and where each coordinate axis
corresponds to a component of vector x; and

« the K-dimensional objective space, denoted as A, in
which objective functions coexist and where each coor-
dinate axis corresponds to a component of vector F(x).

Notice that each point in 2 has its corresponding point in A.
The former point represents a solution and the latter represents
the quality of this solution. It is worth mentioning that more
than one point in {2 may be mapped to the same point in A.
For practical purposes, we consider that {) contains only the
feasible solutions.

D. Multi-objective Optimization Problem (MOP)
A general MOP is defined as:

optimize F(x)
subject to gs(x) <0 s .S
M) =0 j=1,2,3..J;

For a MOP, an EA optimizes (minimizes/maximizes) the K
objective functions contained in the vector F(x).

gs(x) < 0 and hj(x) = O represent constraints that must
be fulfilled while optimizing F(x) and € contains all feasible
x satisfying all restrictions that can be used to optimize an
objective function F(x).

E. Pareto Dominance

Given two vectors X, X’ € ), the vector X is said to dominate
x’, x = X/, iff X is not worse than x’ in any objective function
and it is strictly better in at least one objective function [11].

If neither x dominates X', nor X’ dominates x, X and x’ are
said to be no-comparable, denoted as x ~ x’.

F. Fareto optimal set and Pareto optimal front

For a given MOP, the Pareto optimal set (P*) is the
set containing all the solutions that are non-dominated with
respect to €). It can be denoted [12]:

P* = {x € Q-3 € Q such that X' = x} (1)

Then, for a given MOP and its corresponding Pareto optimal
set P*, the Pareto optimal front (P F™) is the result of mapping
P* to A. PF* is defined as [12]:

PF* = {F(x) € A | x € P*} )

There are cases, specially in real-world problems, when
the Pareto optimal front cannot be calculated for diverse
reasons. Then, a reference set R can be considered. A reference
set is an approximation to the Pareto optimal front that is

used when PF™ is unknown, containing all non-dominated
solutions already known.

It is worth emphasizing that for practical real-world applica-
tions, it is not always necessary to calculate the Pareto optimal
set being enough the calculation of a good approximation to
it with its corresponding Pareto front approximation.

G. Approximation set

An approximation set is defined by Zitzler et al. as follows
[2]: let A C A be a set of objective vectors. A is called an
approximation set if any element of A does not dominate
or is not equal to any other objective vector in A. The set
of all approximation sets is denoted as Z. As mentioned
above, the result of solving a real-world problem usually is an
approximation set A and not the Pareto optimal front PF™.

H. Performance metric

Given h approximation sets A; € Z,i = 1,2...h, an h-
ary performance metric or quality indicator, I, is defined by
Zitzler et al. in [2] as a function I : Z" — R, which assigns
to each set (Aj, As,...,Ay) a real value I(A;, Ao, ..., Ap)
usually used to compare the quality of different algorithms
when solving MOPs.

1. Metrics classification

As said before, there are two main ways of categorizing
metrics. The first classification criterion considers the aspects
that metrics measure when evaluating the approximation sets
in Z. Considering an approximation set A, as it will be shown
in Table IV, the metrics can be grouped as [1]:

o Cardinality metrics: the cardinality of A refers to the
number of solutions that exists in A. Intuitively, a larger
number of solutions is preferred.

e Accuracy metrics: this aspect refers directly to the
convergence of A. In other words, it indicates how distant
is A from the theoretical Pareto optimal front PF™.
Notice that when the Pareto optimal front is unknown,
a reference set R is considered instead.

o Diversity metrics: distribution and spread are two very
closely related facets, yet they are not completely the
same [1]. The distribution refers to the relative distance
among solutions in A [11] while the spread refers to the
range of values covered by the solutions in A [3]. The
spread is also known as “the extent” of an approximation
set.

The second classification criterion can be easily deduced
from the formal definition of performance metric given in
Section II-H. It takes into consideration the number h of
approximation sets that will be evaluated by the metric. Two
types of metrics have been used in the specialized literature:

o Unary metrics: The metric is said to be unary if it
receives as parameter only one approximation set A to be
evaluated. Formally, an unary metric is a function denoted
as I(A): Z—R.

o Binary metrics: The metric is said to be binary if it
receives as parameter two approximation sets, A and B,
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to be compared. Formally, a binary metric is a function
denoted as I(A,B) : Z? — R.

Notice that unary metrics give a real value after considering
one or more of the three aspects mentioned above while
binary metrics consider mainly the relationship between two
approximation sets in terms of dominance to give an idea of
which one is better. It is worth mentioning that unary metrics
that measure accuracy need one of the following parameters:

1) a reference point. This parameter is specifically used to
compute the hypervolume metric [13] and it is employed
to calculate the space covered by solutions in the objec-
tive space A;

2) metrics like GD, IGD, Y, etc. require the points in
the Pareto optimal front PF* to calculate convergence.
When PF™* is unknown, a reference set R is used to
estimate the closeness to PE™.

It is important to remark that the vast majority of existing

metrics are unary. This fact will be easily noticed in Table IV.

A more detailed discussion on unary and binary metrics,

their advantages and limitations, can be found in [2].

III. METHODOLOGY

This section describes the general methodology followed in
this work to analyze the state-of-the-art usage of performance
metrics in evolutionary multi-objective optimization bench-
marking.

First, it was necessary to define an universe of articles
to be analyzed. EMO is a bi-annual international conference
series, dedicated to advances in the theory and practice of
evolutionary multi-criterion optimization [8]. EMO conference
was selected to serve as source of information for this study
since it is a top event in the field and hence it can reflect
the real state of the art. This survey covers the 3rd (2005)
[4], 4th (2007) [5], Sth (2009) [6], 6th (2011) [7] and 7th
(2013) [8] editions of EMO. The 8th (2015) edition [54] was
not included since its proceedings were published after this
survey was completed.

After defining the universe of articles and since the scope of
EMO is quiet extensive, an inclusion criterion was established
to have the samples of relevant articles for this study. Let U
be the universe of articles containing all the research works
published in the five mentioned editions of EMO and x an
article, the set of relevant articles W was fulfilled according
to the following inclusion criterion:

W := {x € U|x uses at least one performance metric}

With the inclusion criterion properly defined, the research
questions that this work aims to answer can be presented:

o What is the set of performance metrics used by the EMO
community? how has that set of performance metrics
evolved?

o Considering each edition of EMO individually, what is the
percentage of articles that apply at least one performance
metric? how has that percentage varied throughout EMO
editions?

TABLE I
ALL PERFORMANCE METRICS CITED IN EMO CONFERENCE FROM 2005
TO 2013
Id | Performance metrics Symbol
1 Attainment functions approach metric [14] -
2 Convergence metric [15] CM
3 Cluster metric [16] Cly,
4 Consolidation Ratio [17] CR
5 Contribution metric [18] -
6 Convergence index [19] -
7 Convergence measure [20] T
8 Coverage [21] -
9 Coverage of the front [22] -
10 | D metric [23] D
11 D quantifier [24] -
12 | D1R [25] -
13 | Distance-based indicator [26] D(y)
14 | Diversity metric [15] DM
15 | Dominance-based quality [27] DQp
16 | Entropy metric [28] -
17 | Epsilon family [2] €
18 | Generational distance [12] GD
19 | Hypervolume [13] HV
20 | Hypercube-based diversity metric [20] -
21 Inverted generational distance [29] IGD
22 | My metric [3] My
23 | M3 metric [3] M*3
24 | M3 metric Improved [30] -
25 | Maximum crowding distance [31] MCD
26 | Mean Absolute Error [32] -
27 | Minimal distance graph [33] MDG
28 | Mutual domination rate [34] MDR

29 | Non-dominated evaluation metric [11] -
30 | ONVG [35] -
31 | Overall Pareto Spread [16] -
32 | Population per run [36] -
33 | R-metric [37] R
34 | Ratio of non-dominated individuals [38]
35 | Ratio of non-dominated solutions [39] -
36 | Relations between non-dominated fronts [40] -
37 | Spacing [35] Sp
38 | Sparsity Index [19] -
39 | Spread measure [41] -
40 | Spread metric [42] -

41 | Spread: Delta indicator [11] A

42 | Spread: Generalized Spread [43] A*
43 | Success Counting [44] SCC
44 | Sum of maximum objective values [45] Smax
45 | The adjusted Rand Index [46] -

46 | The average distance of points to the PF [47] | -

47 | The delineation metric [48] -

48 | The diversity metric [48] -

49 | The front Spread [49] FS

50 | The front to Set Distance [49] (DPE;S)
51 | Two set coverage [50] C

52 | pq metric [51] nd

53 | Volume measure [52] Vp(A)

54 | e-performance metric [53]

o What metrics were used the most at each EMO edition?

o What is the tendency of the most-used metrics?

o What metrics tend to decrease/increase in usage?

o What is the average number of metrics used per article
in EMO?

To calculate the tendency of the performance metrics we
used the least squares regression approach.

From a total of 262 articles published in the five considered
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TABLE II
TOTAL OF WORKS PUBLISHED IN EMO EDITIONS AND THE NUMBER OF WORKS THAT USES PERFORMANCE METRICS
; EMO | EMO | EMO | EMO | EMO
Articles 2005 | 2007 | 2009 | 2011 | 2013 | 1ol
Published articles (U) 59 65 39 42 57 262
Articles using metrics (W) | 33 29 23 21 33 139
Percentage (%) 55.93 | 44.62 | 58.97 | 50.00 | 57.89 | 53.05
editions of EMO only 139 satisfied the inclusion criterion TABLE III
(see details in Table II). 54 metrics were found in EMO as NUMBER OF METRICS USED PER ARTICLE FROM 2005 TO 2013
a result of applying the above described methodology. Table I Quantity of metrics
summarizes all those 54 metrics and their standard symbols. EMO employed per article
In the next section, results and discussion about ranking and 2%%‘;10115 }2 g ; ; 3>4 gtal
tendency of performance metrics are presented. 2007 5 9 g Z 1 79
2009 12 4 5 1 1 23
IV. RESULTS 2011 10 7 7 I 2 21
. : 2013 19 10 2 1 1 33
Th¥s section presenFs the answers to the key research ] & 6 3% 9 3 139
questions stated in section IIL Percentage (%) | 43.17 | 2590 | 18.71 | 647 | 5.76 | 100

A. Usage of metrics

First, it is important to show how the usage of metrics
behave during the last years. Table II reflects the usage of
metrics from 2005 to 2013 by presenting the number of
research articles that used at least one metric per EMO edition.

Remember that the total number of articles published in
EMO is the universe U of papers and the total number of
articles that used performance metrics corresponds to the
set W of articles that satisfied the condition applied by the
inclusion criterion. Then, let Uyeqr and Wye,, be the total
number of articles published in a year and the number of
articles that used metrics in that year. Then, from Table
II: Wagos represents the 55.93% of Uspos, Wapo7 represents
the 44.61% of Usgg7, Wagog corresponds to the of 58.97%
Usoog, Wap11 18 CXElCﬂy the 50% of Usp11, Wao13 represents
57.89% of Usp1s and finally W corresponds to the 53.05%
of U. It is interesting how the citation of metrics reached the
lowest point in 2007 but two years later it reached its highest
point in 2009. Notice that the usage of metrics has not varied
meaningfully from 2005 to 2013 being a relevant comparison
tool for most EMO publications, proving its acceptance in the
research community.

Table III shows how many performance metrics were cited
per article in EMO. It is clear that the vast majority of articles
used between 1 and 2 performance metrics. Also, it is notable
how the number of articles using more than 2 metrics have
decreased since 2007. The average of performance metrics
used per article considering all EMO editions is 2.11. Note
also that number of papers clearly decreases with the number
of metrics.

Finally it should be mentioned that Wagner et al. [55] cited
9 performance metrics, the maximum number in the studied
set of articles W.

B. Ranking

Now, the ranking of metrics throughout the years can
be presented. For space reasons, the following ranking only

covers the TOP metrics considering the number of citation
achieved by the metrics in W.

Table IV presents the top-ten number of citations in EMO
and the corresponding metrics. The most used performance
metric was definitively the hypervolume metric with 91 cita-
tions. The hypervolume (HV) [13], also known as S metric,
hyper-area or Lebesgue measure, is an unary metric that
measures the size of the objective space covered by an
approximation set. A reference point must be used to calculate
the mentioned covered space. HV considers all three aspects:
accuracy, diversity and cardinality, being the only unary metric
with this capability. It has been widely accepted since it offers
the following unique and desirable properties [56]: i) whenever
one approximation set completely dominates another approxi-
mation set, the hypervolume of the former will be greater than
the hypervolume of the latter. As a consequence, HV is said
to be Pareto compliant; ii) as a result from the just mentioned
property, hypervolume guarantees that any approximation set
A that achieves the maximum possible quality value for a
particular MOP, contains all Pareto optimal solutions. Besides,
a binary version of this metric was proposed in [23] to give HV
the capability of assessing the dominance relationship between
two approximation sets.

The generational distance metric (GD) occupies the second
position of the ranking with 26 citations. GD takes as reference
an approximation set A and calculates how far it is from the
Pareto optimal front PF* (or reference set R). This unary
measure considers the average Euclidean distance between the
members of A and the nearest member of PEF™ [12]. It can be
noticed that GD considers only one aspect of A: the accuracy.

The third most-used metric is epsilon (¢) [2]. Epsilon is a
binary indicator that gives a factor by which an approximation
set is worse than another considering all objectives. Formally,
let A and B be two approximation sets, then ¢(A, B) equals
the minimum factor € such that for any solution in B there is
at least one solution in A that is not worse by a factor of e
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TABLE IV
TOP TEN OF THE MOST USED METRICS IN EMO FROM 2005 TO 2013
. . . Classification
Ranking | Citations Metrics e Sets
- Accuracy
1° 91 Hypervolume (HV) - Diversity Unary
2° 26 Generational distance (GD) - Accuracy Unary
3° 23 Epsilon family (€) all Binary
. . - Accurac
17 Inverted generational distance (IGD) - Diversi t;} Unary
4° 17 Spread: Delta indicator (A) - Diversity Unary
17 Two set coverage (C) all Binary
50 9 ONVG - Cardinality | Unary
9 R-metric all Binary
6° 8 Convergence measure () - Accuracy Unary
6 Convergence metric (CM) -Accuracy Unary
- Accurac
7° 6 DiR - Diversit;} Unary
6 Spacing (Sp) - Diversity Unary
8° 5 M3 metric - Diversity Unary
9° 4 M7 metric - Accuracy Unary
3 Diversity metric (DM) - Diversity Unary
10° 3 Entropy metric - Diversity Unary
3 Spread measure - Diversity Unary

considering all objectives [2].

In the fourth position there are three metrics with 17
citations each: inverted generational distance (IGD), spread
(A) and two set coverage (C). Each of these metrics considers
different criteria of an approximation set. IGD [10] is an
inverted variation of GD but it presents significant differences
with GD: i) it calculates the minimum Euclidean distance
(instead of the average distance) between an approximation set
A and the Pareto optimal front PF™, ii) IGD uses as reference
the solutions in PF™* (and not the solutions in A) to calculate
the distance between the two sets and iii) if sufficient members
of PF* are known, IGD could measure both the diversity and
the convergence of A [57].

The A metric is an unary indicator that measures the distribu-
tion and extent of spread achieved among the solutions in A.
As shown in Table IV, A considers only one aspect: diversity
of solutions.

Two set coverage [23], usually named C-metric or simply
“coverage”, is a binary indicator that can be described as
follows: let A and B be two approximation sets. C(A, B)
gives the fraction of solutions in B that are dominated by at
least one solution in A [2]. Hence, C'(A, B) = 1 means that
all solutions in B are dominated by at least one solution in A
while C'(A4, B) = 0 implies that no solution in B is dominated
by a solution in A.

The fifth position in Table IV is occupied by two metrics,
ONVG and R-metric, having 9 citations each. ONVG [35]
is an unary cardinality metric that gives the total number of
solutions found in an approximation set [12]. R-metric [37] is
a family of three binary indicators: R; , Ry and Rjg that are
based on a set of utility functions. Basically, the idea is that
for any two approximation sets (A and B), these metrics use a
set of utility functions and determine the expected number of
occasions the solutions of one set are better than the solutions

of the other. That is, these R-metrics declare as the winner the
set that will be the choice of most decision-makers [15]. R
indicators give the relative quality of two approximation sets.
A further reading on R-metric can be done in [37] and [58].

The sixth position is for the convergence measure (Y1)
with 8 citations. This unary metric measures the extent of
convergence to a known set of Pareto optimal solutions. YT
uses the average Euclidean distance among solutions in an
approximation set and Pareto optimal solutions to calculate the
convergence. It is important to mention that Y can also provide
some information about the spread in the solutions [20]. This
accuracy metric need as parameter the Pareto optimal front
PF* or a reference set R.

The seventh position in Table IV belongs to three unary
metrics with 6 citation each: convergence metric (CM), D;R
and spacing (Sp). CM calculates per each run of an EA the
normalized minimum Euclidean distance from an approxima-
tion set to the Pareto optimal front [15]. The average of these
distances is the value given by CM. D;R [25] is very similar
to IGD, but it measures the mean distance, over the points
of the Pareto optimal front (or reference set), of the nearest
point in an approximation set [59] and, as IGD, D;R can be
used to measure convergence and diversity. On the other hand,
Spacing (Sp) [35] was designed to measure how evenly the
members of an approximation set are distributed. A value of
0 for Sp means that all members of the approximation set are
equidistantly spaced.

Having 5 citations, the eighth position is for the M3 diver-
sity metric. This unary function was defined in [3] along with
two other complementary metrics in the objective space: M7
and M. This metric considers the extent of an approximation
set. M3 is usually named as “extent metric” or “maximun
spread”.

In the ninth position resides the convergence metric M
with 4 citations. As just mentioned, M{ complements with
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two other metrics, M3 and M3, to asses the quality of an
approximation set A [3]. M{ gives the average distance of A
to the Pareto optimal front (or reference set). This metric is
also named “Average distance”.

The last position in this ranking is shared by three unary
metrics: diversity metric (DM), the entropy metric and the
spread measure with 3 citations each. The entropy metric [28]
and DM [15] are two very related diversity metrics that apply
an entropy concept to calculate the diversity of solutions. DM
is based on the entropy metric. Both of them basically attempt
to project the solutions of an approximation set on a suitable
hyperplane assigning them entropy functions that later will
be added together to compose a normalized entropy function.
Further explanation on these metrics can be found in [28] and
[15]. The spread measure is an alternative to calculate the
diversity in an approximation set. Basically, this metric gives
a notion of the spread by using the sum of the width of each
objective [41].

Finally, the top-five metrics of each EMO edition are shown
with more details in Table V. Note that for every metric the
number of citations is specified below. Metrics with equal
number of citations occupy the same positions in the ranking.
Once again, HV beats all other metrics in every EMO edition.
It is remarkable how € appeared in 2007 and since then it has
been one of the most cited metrics. A similar situation can be
observed with respect to IGD. On the other hand, metrics like
C, Y and A have decreased in usage dramatically. GD metric
achieved its highest point in 2009 and then fell, but it is still
a widely-used metric.

An interesting phenomenon can also be appreciated in Table
V: the variety of cited metrics was reduced notably throughout
the years. In 2005 nine metrics conformed the top five of the
most cited metrics, in 2007 and 2009 the number decreased to
8, in 2011 the number was reduced to 7 and finally in 2013
only 6 metrics conformed the top five. This indicates that the
process of establishing an “ideal” set of metrics to asses the
performance of EAs is somehow advancing, showing a process
of maturity in the filed.

C. Tendency

This part of the paper estimates how the usage of top metrics
may behave in the following years. For space reasons, we
included the analysis of tendency of the first five positions
of the ranking displayed in Table IV (the 8 most cited
metrics). As stated in Section III, the least squares method
was employed to calculate the regression line showed in the
following figures. Note that figures show normalized values to
make the numbers of citations per EMO edition comparable.
To normalize, we divided (for each metric) the number of
citation achieved in a year by the number of articles in the
set Wyear. The trend line equation is also displayed with each
figure.

1) HV: The usage and tendency of Hypervolume is dis-
played in figure 1. The number of citations in every EMO
edition shows that HV is by far the most accepted metric
in the community. Notice that in 2013 almost 82% of the

Hypervolume (HV)
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Fig. 1. Tendency of hypervolume metric (the trend line is defined by the
equation: citations = 0.049 year — 98.748)

articles used this metric for experimental purposes, implying
an enormous growth of almost 43% in citations with respect
to 2005. Hence, the regression line for the hypervolume is
ascendant. This means in practical terms the HV will still be
used in the next years at least as much as it has been used until
2013. This indicator gained special attention for the properties
mentioned in Subsection IV-B but it has some biases that must
be considered: first of all, HV requires preference information
for choosing the reference point and even though there is some
freedom to choose this point, that could imply in some cases
information that may not be appropriate in specific situations
[56]. Second, HV may be misleading if the approximation
set A is non-convex. This bias and its possible solution are
covered in detail in [12]. Third, many-objective problems are
gaining attention in the multi-objective optimization field i.e.
multi-objective problems with large number K of objective
functions. The worst-case computational complexity of this
metric is exponential with respect to the number of objective
functions K [60]. In consequence, it becomes unsuitable to
apply HV for many-objective problems. Chan [60], Beume et
al. [61] and Fonseca et al. [62] presented alternatives to deal
with this situation.

2) GD: Figure 2 shows the tendency of the second most-
used metric: the generational distance. It is interesting to
note that while HV was increasing in use, the opposite
happened with GD. However, the proportion of citations in
2013 improved for GD with respect to the years 2011 and
(specially) 2009. Generational distance presents the advantage
of being lightweight (if compared with the hypervolume, for
example) in terms of computational costs and, combined with
others metrics, can give a very acceptable notion of quality
for an approximation set A. Yet, two main drawbacks can be
identified [11]: i) if there exist an approximation set A with a
large fluctuation in the distance values that are calculated per
generation, the metric may not reveal the true distance; ii) it is
necessary to know the Pareto optimal front or at least a large
number of Pareto optimal solutions.

Although the regression line clearly indicates that this
metric is decreasing in use, GD is still employed in many
studies and hence considerable amount of time shall pass
before researchers desist from using it.
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TABLE V
TOP-FIVE METRICS CONSIDERING EACH EMO EDITION INDIVIDUALLY

1o HV HV HV HV HV
13 citations 18 citations 17 citations 16 citations 27 citations
20 GD and C € € € 1IGD
7 citations 9 citations 5 citations 5 citations 7 citations
30 A GD and A GD 1GD GD
6 citations 6 citations 4 citations 4 citations 6 citations
40 T C IGD and A GD and C €
4 citations 5 citations 3 citations 3 citations 4 citations
50 CM, D1R, M{ and Sp | Y,IGD and M; | C, ONVG and R | A and ONVG | ONVG and R
3 citations 3 citations 2 citations 2 citations 2 citations
Total number of metrics 9 8 8 7 6
Total number of citations 33 41 31 30 46
Generational Distance (GD) Epsilon tamily (€)
0.9 0.9
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Fig. 2. Usage and tendency of generational distance (the trend line is defined
by the equation: citations = —0.006 year 4 12.704)

3) e: The epsilon family consists in a variety of unary and
binary indicators, and it appeared remarkably in EMO 2007.
Since then, this metric has gained a place among the well-
accepted approaches to asses the quality of solution sets. The
usage and tendency of e can be seen in Figure 3. Although
it has reached its highest point it 2007 (31% of citations)
and then decreased in usage, what the regression line suggests
is interesting and expectable considering that binary € has a
valuable feature: € can give complete information about the
relationship of two approximation set. In fact, this indicator
can detect whether an approximation set is better than another.
€ indicator is inexpensive to compute [2] and thus it represents
a very viable alternative specially when dealing with many-
objective problems.

4) IGD: Figure 4 reflects how the inverted generational
distance metric has been used and how its usage tends to
increase in the future. It seems very clear that IGD has gained
more and more attention throughout the years, showing a
total increase of approximately 18% in citations from 2005
to 2013. What makes IGD attractive are basically its low
computational cost and its capability of considering not only
the convergence of an approximation set, but also the diversity
if sufficient optimal solutions are known. The latter feature
may lead to a drawback for this metric when the Pareto
optimal front is unavailable and the reference set contains only
few optimal solutions. This drawback is probable to occur

Year

Fig. 3. Usage and tendency of epsilon family (the trend line is defined by
the equation: citations = 0.008 year — 16.916)
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Fig. 4. Usage and tendency of inverted generational distance (the trend line
is defined by the equation: citations = 0.022 year — 45.136)

when dealing with many-objective problems. This difficulty
and some strategies to overcome it are discussed in [63].
Still, IGD represents an excellent alternative in many-objective
problems to other computationally expensive metrics like the
hypervolume. Consequently, the considerable slope of the IGD
regression line and its simplicity compared to HV may suggest
that IGD usage will grow as many-objective problems become
more popular considering the complexity of calculating HV.
5) A: This metric is the preferred diversity indicator in
the literature and it was widely used in previous years but
Figure 5 shows that A experimented an important decrease



2015 XLI Latin American Computing Conference (CLEI)

0.14
012¥=="""%= ~O
~
0.1 =
- . PR [
Pl = === e . Y %4 Sea
0.08 T ~.o N ,—"‘~. S~o
~ 3 _immT s s Seo S~o
o.oe.;--A->e:' N ““f .o S m
> ~ ~ O s i
0.04 5:“ S ~ .~ ‘¢“: AN l“‘—*'."’"h ,"»T- = *g,“.
. TEETNGL S i ad B,
0.02 N e g% O
Se S N g% “Nin, TN
o S *.u"“ hiL FOEZ Sors & Pog "%
2005 2007 2009 2011 2013
== 4==:ONVG ===%==:R -y -y
CM = = = = DIR M*3
== 3= =:Sp M*1 DM
....... i ENtropy = = K= = Spread measure
Fig. 7. Usage of the rest of the top-ten metrics
Spread (4) convergence metrics is still an interesting approach to asses
09 quality at a low computational cost.
0.8 .. . . . .
07 6) C: Similar to the spread’s situation, Figure 6 displays
0.6 how C' metric was decreasing in citations in the late years. The
2 05 percentage of citations decreased from approximately 21% to
g o 9% in the lapse 2005-2009; in 2013 no article cited this metric.
zz C was used in a vast quantity of studies because the idea of
o applying a performance metric that could reflect information
0 on relative quality between two approximation sets A and B
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Year

Fig. 5. Usage and tendency of A.(the trend line is defined by the equation:
citations = —0.021 year 4 41.784)

Two set coverage (C)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
2004

Citations

2005 2006 2007 2008

2009

2010 2011 2012 2013 2014

Year
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in usage in the last years. This diversity indicator diminished
in citations due to the existence of other metrics that provide
more complete information on the quality of solution sets by
considering more than one approximation set (binary metrics)
or by taking into account more than one aspect. Then, the
major drawback of A is that it measures only the diversity of
the approximation set A. Yet, A combined with some other

was very interesting. In fact, this quality indicator was the first
widely-accepted binary metric. Apparently, the rise of metrics
like hypervolume and (specially) epsilon has impacted directly
in the usage of this metric given that e indicator can reflect
more aspects of the relative quality of A and B at a low
computational cost. Although coverage is capable of detecting
dominance between approximation sets, it does not provide
additional information about this dominance. Furthermore, C
values are often difficult to interpret when solution sets A
and B are no-comparable [2]. This scenario commonly takes
place in many-objective problems. Regarding many-objective
problems and the algorithms used to solve them, Von Liicken
et al. published a complete survey.

Finally, the usage of the remaining metrics in Table IV can
be seen in Figure 7. Note that in Figure 7 a different Y-axis
scale is used to easily appreciate the behavior of the less-used
metrics. All these metrics clearly tend to continue decreasing
in citations or at best maintain their low usage. There may be
several explanations on why these performance metrics were
used in many studies in the past years but in the late years
researchers somehow desisted from using them. An important
drawback for Sp, DM, entropy metric, M3 and spread measure
is that they only consider the diversity of solutions in A. In
fact, Sp only considers the distribution (and not the spread) of
solutions at a high computational cost [11]. With M3 occurs
the opposite, M3 considers only the extent of A, leaving
out information about the distribution. CM, Y, M7 and D;R
are all convergence indicator (like GD and IGD) that were
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successfully applied in many articles and they implemented
diverse strategies to estimate in some way the closeness to
the Pareto optimal front. However, having a set conformed
by many indicators measuring the same aspect requires at
some point the selection of representative members. These
representative convergence metrics were with no doubt the
GD and IGD indicators. Both became almost standard when
measuring convergence is needed, leaving the other metrics in
background. R-metric and ONVG somehow have maintained
their citation level during the years. They never achieved an
important number of citations but the community has not
desisted from using them. This may indicate for ONVG that
counting the number of solutions obtained for a MOP is still
a useful information for experimental purposes. R-metric has
been accepted as a valid alternative binary metric by a small
part of the community and that it still can evolve in order to
gain more acceptance in the future, even though its usage is
not relevant nowadays.

V. CONCLUSION AND FUTURE WORKS

This paper presented an extensive review of the perfor-
mance metrics based on the research articles published in a
specialized event: Evolutionary Multi-criterion Optimization
conference. We revealed all the performance metrics used by
the EMO community during 8 years, from 2005 to 2013 (see
Table I). We identified the most used metrics in terms of the
citations they have received and built a top-ten ranking (see
Table IV). The top-ten metrics were defined and, for the first
fifth positions of the mentioned ranking, an analysis of usage
and tendency was performed.

Considering the results obtained in this work, we can
summarize the following conclusions:

o the hypervolume (HV) is the unary metric preferred
by the research community. In fact, hypervolume was
the most used metric beyond the classification method
chosen.

« With regard to convergence metrics, generational distance
(GD) and inverted generational distance (IGD) are the
most used metrics. While GD is decreasing in usage, IGD
is clearly getting more acceptance.

o With regard to diversity metrics, the spread (A) was
the most accepted diversity metric. However, in the last
years, the community has not shown interest in measuring
only the diversity of solutions anymore, decreasing the
relevance of this metric.

o With regard to cardinality metrics, ONVG was the metric
used and it is still used in some works, even though it is
not very relevant for most researchers.

o With respect to binary metrics, two set coverage (C) was
widely used before but now the community has paid more
attention to the e indicator. On the other hand, R-metric
is a binary metric that was cited in every EMO edition
but it is still in process of being accepted.

e« HV and IGD are the metrics that show the most notable
in-ascendant tendency. Moreover, the regression line for

IGD indicates that this metric is experimenting a con-
siderable growth in usage. Even though the hypervolume
also shows a remarkable growth, in the following years it
may tend to stop its growth in citations given the rise of
many-objective problems where HV is not suitable due
to its exponential computational complexity.

o Finally, it is important to state that the variety of per-
formance metrics has been interestingly reduced. For
every measured aspect in the solution sets, there exist
metrics that have already became standard to perform the
measurement, denoting a maturity in the multi-objective
optimization field.

At the moment of the current redaction, the authors are
working in a more complete survey not presented in this paper
for space reasons.
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