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Abstract—This Master’s thesis focused on studying and devel-
oping techniques for optimally solving the Art Gallery Problem
(AGP), one of the most investigated problems in Computational
Geometry. The AGP, which is a known NP-hard problem, consists
in finding the minimum number of guards sufficient to ensure
the visibility coverage of an art gallery represented as a polygon.

We studied how to apply Computational Geometry concepts
and algorithms as well as Integer Programming techniques in
order to solve the AGP to optimality. This work culminated in
the creation of a new algorithm for the AGP, whose idea is to
iteratively generate upper and lower bounds for the problem
through the resolution of discretized versions of the AGP.

The algorithm was implemented and tested on more than 2800
instances of different sizes and classes of polygons. The technique
was able to solve in minutes more than 90% of all instances
considered, including polygons with thousands of vertices, greatly
increasing the set of instances for which exact solutions are
known. To the best of our knowledge, in spite of the extensive
study of the AGP in the last four decades, no other algorithm
has shown the ability to solve the AGP as effectively as the one
described here. For illustration, in a direct comparison with the
algorithm by Kröller et al., considered one of the most promising
techniques for the AGP, our method solved almost 32% more
instances than its competitor.

In addition, we provide a free version of our code and of
our benchmark for download, which is unprecedented in the
literature.

Index Terms—Art Gallery Problem, Exact Algorithm, Com-
putational Geometry, Combinatorial Optimization, Visibility.

I. INTRODUCTION

During this Master’s Degree at the Institute of Computing
(Unicamp), a new method was developed for optimally solving
the Art Gallery Problem (AGP), one of the most famous and
studied problems in Computational Geometry. The original
version of the Art Gallery Problem, also known as the AGP
with Point Guards, was proposed in 1973 by Klee and consists
in answering the following question: how many guards are
sufficient to ensure that an art gallery (represented by a
polygon) is fully guarded, assuming that a guard’s field of
view covers 360 degrees as well as an unbounded distance
limited only by the walls of the gallery? As an example
of an AGP instance, consider the floor plan of the second
level of the Brazilian National Museum of natural history and
anthropology, in Rio de Janeiro, displayed in Fig. 11. In this

1Obtained from www.museunacional.ufrj.br.

example, we see that 25 guards are sufficient to watch over
the entire area.

The main motivation in working with the AGP lies in its
interdisciplinarity and its complexity. The AGP can be defined
as a Computational Geometry problem, but it is at the same
time an Optimization problem. In addition, despite being a
theoretical problem, the endless possibilities of relaxing and
restricting the initial AGP constraints allow us to create a
number of variations, some of which have important practical
applications. For example, by limiting the visibility range of
the guards and forcing connectivity between them, we have
a problem similar to what is found when placing nodes in a
sensor network.

Another interesting fact in working with the AGP is the
challenge in pursuing exact solutions. Until the first decade
of 2000, the main achievements in the study of the AGP
were on the theoretical side of the problem. As early as
1975, Chvátal shown that bn/3c guards are always sufficient
and sometimes necessary for covering a simple polygon of n
vertices [1]. Roughly a decade later, Lee and Lin [2] proved the
NP-hardness of the Art Gallery Problem with Vertex Guards
(AGPV), which is the variant where the guards are restricted
to the vertices of the polygon. The case of point guards (the
original AGP) is also known to be NP-hard, as proved by
Aggarwal et al. in 1988 [3].

On the other hand, before this thesis, despite several decades
of extensive investigation on the AGP, including contributions
from renowned researchers as O’Rourke, Mitchell, Urrutia,
Ghosh and Fekete, all previously published algorithms for the
AGP with Point Guards were unable to handle instances with
hundreds of vertices and often failed to prove optimality for
a significant fraction of the instances tested. As a matter of
fact, some experts have claimed at that time that “practical
algorithms to find optimal solutions or almost-optimal bounds
are not known” for this problem [4].

In this context, our objective was to find a practical and
robust method for the AGP that would make it possible to
solve complex instances in a reasonable amount of time. To
achieve this goal, we decided to approach the problem with
Integer Linear Programming (ILP) techniques and to employ
the exact method for the AGP with Vertex Guards presented
in [5] as a tool. In their work, Couto et al. solved instances
of the AGPV with thousands of vertices.



Fig. 1. National Museum floor plan (left); an optimal guard positioning (right).

A. Our contribution

In the thesis, we detailed a new robust method for solving
the Art Gallery Problem with Point Guards. The new algo-
rithm, which was presented in papers [6], [7], iteratively solves
discretized versions of the AGP making use of ILP solvers to
quickly obtain new lower and upper bounds for the problem,
until an optimal solution is found or a timeout is reached.

The technique was tested in different occasions and, as
seen in Section IV, it led to good results, being considered
today the state-of-the-art technique for optimally solving the
AGP. In total, 2880 publicly available instances with sizes
reaching 5000 vertices were tested and the method achieved an
optimality rate of more than 90%, which means a significant
improvement over all previously published techniques.

Furthermore, due to the success of our implementation, we
have also recently released a free version of our source code in
the project’s website [8]. This action is a milestone in the quest
for practical solvers for the AGP, since, to our knowledge, it
is the first time that an implementation with verified efficiency
is made publicly available. Hopefully, this will be a catalyst in
the search for new techniques for the problem and an incentive
for other experimentation projects.

B. Text Organization

This text is organized as follows. The concepts, definitions
and theorems necessary to understand the algorithm to be
described are presented in the next section. In Section III,
the technique we developed is explained. Section IV focuses
on how the algorithm was implemented, on the environment
and instances used for testing and also on the most significant
results obtained, including a comparison with other state-of-

the-art techniques. Finally, some conclusions are presented in
Section V.

II. PRELIMINARIES

Before digging into the algorithm and its particulars, it is
necessary to fully understand some important concepts, being
they in the computational geometry field or part of combinato-
rial optimization. In the next sections, the background related
to the Art Gallery Problem and our solver is explained.

A. Computational Geometry

The objective of the AGP is to watch over an art gallery,
which may be represented as a simple polygon or as a
polygon with holes. A simple polygon consists of straight, non-
intersecting line segments that are joined pair-wise to form a
closed path. The set of vertices V contains all points where
consecutive segments are joined. Figures 2 and 3 display
examples of simple and non-simple polygons, respectively.

Fig. 2. Simple polygons.

On the other hand, a polygon with holes Ph can be described
using a simple polygon Pb as the outer boundary and a set of
m disjoint simple polygons H1, H2, ...,Hm totally contained
inside Pb as the holes. In this case, Ph consists in the set Pb−



Fig. 3. Non-simple polygons.

⋃m
i=1 Hi. Two examples of polygons with holes are displayed

in Fig. 4.

Fig. 4. Polygons with holes.

A vertex in a polygon can also receive a special name
depending on the angle between its two incident edges with the
interior of the polygon. If this angle is less than 180◦, than the
vertex is called convex. Otherwise, it is a reflex vertex. Fig. 5
presents some examples. Note that, in the case of a hole Hi,
the convex vertices of Hi are actually reflex in relation to the
entire polygon Ph. Obviously, the reverse is also true for reflex
vertices.

Fig. 5. Convex (purple) and reflex (blue) vertices.

In the AGP, we say that a position is surveilled (watched,
guarded or covered) by a guard g if this position is visible
to g. The concept of visibility can be described as follows:
two points in a polygon P are visible to each other if the line
segment that joins them does not intersect the exterior of P .
Thereafter, the visibility polygon of a point p ∈ P , denoted by
Vis(p), is the set of all points in P that are visible from p. The
edges of Vis(p) are called visibility edges and one visibility
edge is said to be proper for p if it is not contained in any of
the edges of P . Fig. 6 illustrates the concept of visibility.

After defining visibility, the next step is to define the
coverage of a given region. Given a finite set S of points in
P , a covered (respectively, uncovered) region induced by S in
P is a maximal connected region in ∪

p∈S
Vis(p) (respectively,

P − ∪
p∈S

Vis(p)). Knowing this, we say that S fully covers the

polygon P if the covered region induced by S in P equals

Fig. 6. Two points visible (green) and two other that are not visible (red) to
each other (left); the visibility polygon of a point (right).

P . In addition, we can also define CU (S) as a set containing
exactly one interior point of each uncovered region induced
by S.

Moreover, the geometric arrangement defined by the visibil-
ity edges of the points in S, denoted Arr(S), partitions P into
a collection of closed polygonal faces called Atomic Visibility
Polygons or simply AVPs. Clearly, the edges of an AVP are
either portions of edges of P or portions of proper visibility
edges of points of S. Denote by Cf ⊂ S the set of points
in S that cover an AVP f . Define a partial order ≺ on the
faces of Arr(S) as follows. Given two AVPs f and f ′, we say
that f ≺ f ′ if and only if Cf ⊂ Cf ′ . We call f a shadow
AVP (light AVP) if f is minimal (maximal) with respect to
≺. Applying these concepts, it is possible to define CL(S)
as a set containing exactly one point within each light face
of Arr(S) and VL(S) as the set of all vertices of light AVPs.
Figures 7 and 8 illustrate these concepts.

Fig. 7. The arrangement induced by a finite set S of points (left); the set S
and its covered (light green) and uncovered (white) regions (right).

In our work, the complexity of the resulting arrangement is
of great importance for the solver’s performance. In [9], Bose
et al. showed that, for the case where the set of vertices V
induces the arrangement in a simple polygon, the arrangement
complexity is Θ(|P |3). This result can be easily adapted
to prove that, for a generic set S in a hole-free polygon
P , the complexity of constructing Arr(S), as well as the
number of AVPs in the arrangement, is Θ(|S|2 · |P |). In the
general situation, where P can have holes, we did not find



Fig. 8. The arrangement induced by S with the light (blue) (left); and shadow
(red) AVPs (right).

any complexity results in literature. However, as we have
O(|S| · |P |) visibility edges in the polygon, in the worst case,
considering that all of them intersect, we will have a final
complexity of O(|S|2 · |P |2).

B. Integer Programming

In 1987, Ghosh presented an approximation technique [10]
for the AGP with Vertex Guards in which a reduction of the
AGPV to the Set Cover Problem (SCP) is employed. A similar
reduction is also used in the method developed in this Master’s
project.

The SCP is one of the most famous combinatorial problems.
Given a set of elements U , called Universe, and a set A con-
taining subsets of U , the SCP asks for the minimum number
of sets from A whose union equals U . As proved by Karp
in 1972, the Set Cover Problem is NP-complete [11], which
means that obtaining an algorithm with polynomial worst-case
complexity is not possible, unless P = NP. Nevertheless,
in practice, a good option for solving an SCP instance is
to model the problem as an Integer Linear Program (ILP),
even though the cost of solving a general ILP is theoretically
exponential. Today, several ILP solvers are capable of finding
optimal solutions for large SCP instances, with thousands of
variables and constraints, in just a few seconds or minutes.
Below the classic ILP model for the SCP is given.

min
∑
s∈A

xs

s.t.
∑
s∈A
e∈s

xs ≥ 1, ∀e ∈ U

xs ∈ {0, 1}, ∀s ∈ A

In the model, the variable xs has value 1 if the set s is
chosen to be part of the resulting collection of subsets and 0
otherwise. The objective is to minimize the sum of variables
xs, which actually means to minimize the number of sets
selected from A. Finally, the set of constraints presented in
the model ensures that, for every element e ∈ U , at least one
of the subsets containing e is chosen, which gives rise to a
viable solution.

Although ILP solvers are normally a good choice for solving
SCP instances, there are cases where their use may not be so
efficient. In these situations, a technique that can take advan-
tage of particular characteristics of the problem can behave
better and be used to improve the ILP solver’s performance.
In our AGP solver, we implemented some techniques with this
purpose. One well tested method to find good viable solutions
for SCP instances and that was implemented in this project is
a Lagrangian Heuristic.

Apart from the techniques employed to find viable solutions
for the SCP, others can be used to simplify the problem,
before an actual solver is used. For example, after a problem
is reduced to an ILP instance, it is possible to search for
redundant variables or constraints and remove them from
the original matrix. This type of operation can normally be
done quickly and may greatly minimize the size of the initial
instance, probably improving the performance of the ILP
solver.

Details about the Lagrangian Heuristic and the matrix
reduction methods that were implemented in our solver can
be seen in the full text of the thesis [12].

C. The Art Gallery Problem

After discussing important geometric and combinatorial
concepts, it is now possible to discuss the AGP in a more
formal way.

In a geometric setting, the AGP can be restated as the
problem of determining a smallest set of points G ⊂ P such
that ∪

g∈G
Vis(g) equals P . This leads to a reduction from the

AGP to the SCP, in which the points in P are the elements to
be covered (set U ) and the visibility polygons of the points in
P are the sets used for covering (which compose the collection
A). Accordingly, we can use this reduction to construct an ILP
formulation for the AGP:

min
∑
c∈P

xc

s.t.
∑
c∈P

w∈Vis(c)

xc ≥ 1, ∀w ∈ P

xc ∈ {0, 1}, ∀c ∈ P

However, for non-trivial cases, this formulation has an infinite
number of constraints and an infinite number of variables,
rendering it of no practical benefit. A natural idea that arises
is to make at least one of these quantities finite. By fixing only
the guard candidates to be a finite set, we obtain the so-called
Art Gallery Problem With Fixed Guard Candidates (AGPFC).
On the other hand, by restricting solely the points that need
to be covered (here called witness set) to a finite set, we end
up with the special AGP variant known as the Art Gallery
Problem With Witnesses (AGPW). In principle, in the first case,
we are still left with an infinite number of constraints while, in
the second case, we still have an infinite number of variables.
However, in order to have a tractable SCP instance, one should
have both the witness and the guard candidate sets of finite
size. The AGP variant that fulfills this property is named



Fig. 9. An illustration of the four different variants of the Art Gallery Problem:
(a) AGP; (b) AGPFC; (c) AGPW; (d) AGPWFC.

the Art Gallery Problem with Witnesses and Fixed Guard
Candidates (AGPWFC). Examples of these three versions of
the AGP are shown in Fig. 9. Therein, the witnesses and the
guard candidates are identified by the symbols “×” and “⊗”,
respectively. Darker guard candidates refer to guards present
in an optimal solution of the corresponding problem and, when
appropriate, have their visibility polygons also depicted.

To assist in the description of the algorithm in the next
section, we introduce here some other useful notations. Let D
and C be finite witness and guard candidate sets, respectively.
We denote the AGPW, AGPFC and AGPWFC problems
defined for the sets C and D by AGPW(D), AGPFC(C) and
AGPWFC(D,C), respectively. The SCP model associated to
AGPWFC(D,C) is then

min
∑
c∈C

xc,

s.t.
∑
c∈C

w∈Vis(c)

xc ≥ 1, ∀w ∈ D,

xc ∈ {0, 1}, ∀c ∈ C.

D. Basic Theorems

To close this section, we briefly introduce the theorems that
form the basis of our algorithmic solution, which will be fully
explained in Section III. The following theoretical results allow
us to apply reductions of the AGPFC and the AGPW to the
AGPWFC (SCP) and also guarantee its usage to find correct
bounds for the original AGP. It is noteworthy that Theorems 2,
3 and 4 are actually adaptations of results presented in the
work of Couto et al. [5], where the specific problem called
AGPV (AGPFC(V )) was treated.

Theorem 1. Let D be a finite subset of points in P . Then,
there exists an optimal solution for AGPW(D) in which every
guard belongs to a light AVP of Arr(D).

Proof: Let G be an optimal (cardinality-wise) set of
guards that covers all points in D. Suppose there is a guard g
in G whose containing face f in Arr(D) is not a light AVP.
This means that f is not maximal with respect to the order
relation ≺ (see Section II-A). In other words, there exists
a face f ′ of Arr(D) that shares an edge with f such that
f ≺ f ′, i.e., a point in f ′ sees more points of D than one in f
does. An inductive argument suffices to show that this process
eventually reaches a light AVP (maximal w.r.t. ≺) wherein lies
a point that sees at least as much of D as g does, i.e., g may
be replaced by a guard that lies on a light AVP. The Theorem
then follows, by induction, on the number of guards of G.

Theorem 2. Let C be a finite subset of points in P . Consider
the set D composed of a point of each AVP of Arr(C). Then,
G ⊆ C guards D if and only if G is a guard set for P .

Proof: The necessity part is trivial since D ⊂ P , there-
fore, we focus on the proof of sufficiency. By the construction
process of Arr(C), all interior points of a given AVP Ai are
visible to the same set Si ∈ C. Otherwise, there would be an
edge of Arr(C) separating two different points in Ai, which
is obviously not possible. Consequently, if a set G guards one
interior point of Ai, G directly covers the entire AVP. Thus,
since the union of all faces of Arr(C) equals P , G can watch
over the whole polygon by simply covering one interior point
within each AVP.

Theorem 3. Let C be a finite subset of points in P . Consider
the set D composed of a point of each shadow AVP of Arr(C).
Then, G ⊆ C guards D if and only if G is a guard set for P .

Proof: The necessity part is trivial since D ⊂ P , there-
fore, we focus on the proof of sufficiency. Suppose G ⊂ C
guards D, but not P . Thus, there exist regions of P that are
not covered by any of the points of G. Let R be a maximal
connected region not covered by G. Note that R is the union
of (disjoint) AVPs. To prove that at least one of those AVPs
is of type shadow, notice that the entire region R is not seen
by any point in G whose proper visibility edges spawn R. If
R is an AVP, it is by definition a shadow AVP. Otherwise,
there is a candidate ci ∈ C which has a proper visibility
edge eci that intersects and partitions R in two other regions.
One of these regions matches the side of eci visible from ci
while the opposite one does not. Hence, through an inductive
argument, by successively partitioning R, at least one shadow
AVP is bound to be contained in R and therefore uncovered.
This contradicts the hypothesis since G guards D, which is
comprised of interior points of all shadow AVPs.

Theorem 4. Let D and C be two finite subsets of P , so that
C fully covers P . Assume that G(D,C) is an optimal solution
for AGPWFC(D,C). If G(D,C) also covers P , then G(D,C)
is an optimal solution for AGPFC(C).



Proof: Assume that G(D,C) covers P , but it is not an
optimal solution for AGPFC(C). Then, there exists G′ ⊆ C
with |G′| < |G(D,C)| such that G′ is a feasible solution for
AGPFC(C), i.e., G′ covers P . This implies that G′ is also a
feasible solution for AGPWFC(D,C), contradicting the fact
that G(D,C) is optimal for this problem.

III. THE ALGORITHM

The core idea of our algorithm consists in computing
increasing lower bounds and decreasing upper bounds for
the AGP until a proven optimal solution is found or a pre-
established maximum time limit is exceeded. The procedure
for obtaining these bounds involves the resolution of dis-
cretized versions of the AGP. To find a new lower bound,
an AGPW instance is solved, while in the upper bound case,
an AGPFC instance in which the guard candidate set covers
the polygon is worked out. Observe that an optimal solution
for such an instance of the AGPFC is also viable for the AGP,
since the AGPFC asks for a solution that guards the entire
polygon. Consequently, reducing the gap between bounds to
zero means reaching an optimal solution for the original AGP.

In Algorithm 1, we summarize how our technique works.
After initializing the witness and guard candidate sets, the
algorithm enters its main loop (lines 4 to 10). At each iteration,
new lower and upper bounds are computed and, if optimality
has not been proved, the witness and guard candidate sets are
updated in line 8.

In the following two subsections, the procedures for solving
AGPW (line 5) and AGPFC (6) instances are described. After
this, Section III-C briefly describes the resolution method for
AGPWFC instances through ILP techniques. Both the AGPW
and the AGPFC can be reduced to an AGPWFC instance,
justifying why we focus on the latter. In Section III-D, we
present how the management of the witness set is done
and, in the following section, we discuss the selection of
guard candidates. Section III-F gathers all the algorithmic
information presented previously and describes the complete
algorithm for the AGP.

A. Solving the AGPW

The resolution of an AGPW on D allows for the discovery
of a new lower bound for the AGP, since fully covering P
requires at least as many guards as the minimum sufficient
to cover the points in D ⊂ P . However, despite being
a simplification of the original AGP problem, we are still
dealing with an infinite number of potential guard positions,
which does not allow for a direct reduction to the set cover
problem. Thus, our approach is based on discretizing the
guard candidate set, creating an AGPWFC instance from our
original AGPW. To do this, we apply Theorem 1, presented
in Section II-D.

From Theorem 1, one concludes that there exists an optimal
solution for AGPW(D) in which all the guards are in Light
AVPs of the arrangement induced by D. Besides, as every
vertex of an AVP can see at least the same set of witnesses
observed by the points inside it, we can state that there is

Fig. 10. Algorithm 2: (a) AGPW(D); (b) The light AVPs of Arr(D); (c) The
guard candidate set; (d) An optimal solution G ⊆ VL(D) for AGPW(D).

an optimal solution G where each point in G belongs to the
set VL(D) of all vertices from the light AVPs of Arr(D).
Therefore, an optimal solution for AGPW(D) can be obtained
simply by solving AGPWFC(D,VL(D)), as illustrated in the
example of Fig. 10. As seen before, the latter problem can be
modeled as an ILP, where the numbers of constraints and of
variables are polynomial in |D|. This follows, as mentioned
in Section II-A, from the fact that the number of AVPs (and
vertices) in Arr(D) is bounded by a polynomial in |D| and |P |.
Algorithm 2 shows a pseudo-code of the AGPW resolution
method.

As will be shown in Section III-E, the guard candidate set
used in the implemented algorithm for the AGP is not actually
equal to VL(D). The final set C includes additional points and,
depending on the discretization strategy used, may employ
points from CL(D), which are located in the interior of light
faces, instead of the ones in VL(D).

B. Solving the AGPFC

As we now know how to generate lower bounds for the AGP,
the next task is to compute good upper bounds for the problem.
A possible way to achieve this is through the resolution of an
AGPFC instance in which the guard candidate set is known to
cover the polygon. Under this condition, an AGPFC solution
is always viable for the original problem.

In contrast to what was discussed regarding the AGPW,
we now have a finite number of guard candidates and an
infinite number of points to be covered. Therefore, a direct
resolution method using a reduction to an SCP is not possible.
To circumvent this, our algorithm discretizes the original
AGPFC instance, relying on what Theorem 4 establishes.
Theorem 4 shows that an optimal solution for the AGPFC may
be obtained through the resolution of an AGPWFC instance,
provided it fully covers P . Whenever an optimal solution for



Algorithm 1 AGP (Sketch)
1: Set UB← |V | and LB← 0
2: Select the initial witness set D
3: Select the initial guard candidate set C ⊇ V
4: while (UB 6= LB) and (MAXTIME not reached) do
5: Solve AGPW(D), set Gw ← optimal solution of AGPW(D) and LB← max{LB, |Gw|}
6: Solve AGPFC(C), set Gf ← optimal solution of AGPFC(C) and UB← min{UB, |Gf |}
7: if (UB 6= LB) then
8: Update D and C
9: end if

10: end while
11: return Gf

Algorithm 2 AGPW(D)
1: Arr(D)← construct the arrangement from the visibility polygons of the points in D
2: VL(D)← identify the vertices of the light AVPs of Arr(D)
3: C ← VL(D)
4: Solve AGPWFC(D, C): set Gw ← optimal solution of AGPWFC(D, C)
5: return Gw

the simplified version (AGPWFC) leaves uncovered regions
in P , additional work is required. To guarantee that we attain
an optimal solution for the AGPFC, we will employ here a
technique designed by Couto et al. [5] to solve the AGPV, a
special case of the AGPFC where C = V , but which may be
used to handle the general case without significant changes.

Initially, consider that we have a finite witness set D.
Using the guard candidate set C, we can create and solve
the AGPWFC(D,C) instance. If the solution fully covers the
polygon, we have satisfied the hypothesis of Theorem 4 and,
consequently, we have an optimal solution for the AGPFC.
Otherwise, there are regions of the polygon that remain
uncovered. We now update the witness set, adding new points
within the uncovered regions, denoted CU (G), and repeat the
process.

As demonstrated in [5] by Couto et al., the iterative method
for solving the AGPFC converges in polynomial time. To
clarify this point, consider Theorem 2 and its proof. This
theorem states that constructing D by choosing only one point
within each AVP of Arr(C) is enough to ensure the whole
coverage of P . As the number of AVPs is polynomial (see
Section II-A) and we iteratively construct D by choosing
witnesses in the interior of uncovered AVPs of Arr(C), it is
straightforward that the number of iterations is bounded by the
polynomial complexity of Arr(C). Although the convergence
time for AGPFC is theoretically guided by this complexity,
Couto et al. showed throw extensive experiments that, in
practice, the number of necessary iterations is much lower.
Moreover, it can even be argued that it suffices to select one
point from each shadow AVP of the arrangement induced by
C (see Theorem 3). Fig. 11 shows how the algorithm for the
AGPFC iteratively adds new witnesses in different AVPs until
the polygon is fully covered.

A pseudo-code for the algorithm employed to solve the

Fig. 11. Algorithm 3: A sequence of AGPWFC(D,C) instances is generated
until a viable solution for the AGP is obtained.

AGPFC is shown in Algorithm 3.

C. Solving the AGPWFC (SCP)

Having reduced the AGPW and the AGPFC into AGPWFC
instances in order to obtain the desired bounds, the objective
becomes solving the latter efficiently. Since AGPWFC(D, C)
can be easily reduced to an SCP, where the witnesses in D are
the elements to be covered and the visibility polygons of the
guard candidates in C are the subsets considered, we will make
use of the ILP formulation for SCP presented in Section II-B.



Algorithm 3 AGPFC(C)
1: Df ← initial witness set
2: repeat
3: Solve AGPWFC(Df , C): set Gf ← optimal solution
4: if Gf does not fully cover P then
5: Df ← Df ∪ CU (Gf )
6: end if
7: until Gf fully covers P
8: return Gf

A simple and straightforward approach would be to directly
use an ILP solver, such as XPRESS [13], CPLEX [14] or
GLPK [15], since even large instances of the (NP-hard) SCP
can be solved quite efficiently by many modern integer pro-
gramming solvers. However, as observed in our experiments,
some AGP instances can generate significantly complex and
very large SCP instances, rendering the solvers less efficient.
For this reason, some known techniques were implemented
to improve the solvers’ running time. Among these, the
most effective consisted in the reduction on the number of
constraints and variables in the initial model. Moreover, we
also implemented a Lagrangian Heuristic to help the solver
obtaining initial viable solutions. Details of these implemen-
tations can be seen in the full text of the dissertation [12].

D. Witness Management

The witnesses selected during the execution of our algorithm
play an important role in the search for optimal solutions for
the AGP. The witness set D is not only decisive for producing
good lower bounds through the resolution of AGPW(D), but it
is crucial to find tight upper bounds, since the candidate set C
of AGPFC(C) is constructed from Arr(D). In this context,
choosing D wisely may lead to a lower gap between the
bounds and, consequently, to a lower number of iterations of
Algorithm 1.

Recall that, before the first iteration of Algorithm 1, an
initial witness set is chosen and, in the following ones, it gets
suitably updated (line 5). In this section, we present all the
initialization alternatives that were considered since our first
work [6] and, after this, we discuss how the set D is updated.

The first initialization choice, called All-Vertices (AV), con-
sists in using all vertices of the polygon as witnesses, i.e.,
D = V . Besides the easy construction of this set, it was
confirmed in tests that the coverage of such points is usually
a good start for covering the whole polygon.

In an attempt to begin with a smaller number of witnesses,
we also considered initializing D with only the convex vertices
of P . This strategy is referred to as the Convex-Vertices (CV)
initialization. The reason for reducing the initial witness set
lies on the fact that a smaller set D is likely to lead to a lower
number of visibility polygon calculations, to a less complex
visibility arrangement and, consequently, to a simpler SCP
model. In addition, we decided to choose only convex vertices
because the reflex ones are usually more exposed due to its
wider visibility angle.

The third alternative is based on a work by Chwa et al. [16].
In this paper, a polygon P is defined to be witnessable when
there exists a finite witness set W ⊂ P with the property
that any set of guards that covers W must also cover the
entire polygon. The authors also present an algorithm that
computes a minimum witness set for a polygon whenever
it is witnessable. The method for constructing this minimum
witness set consists in placing a witness in the interior of
every reflex-reflex edge of P and on the convex vertices of
every convex-reflex edge. The terms convex and reflex here
refer to the interior angles at a vertex or at the endpoints of
an edge. Based on these selection criteria, we devised our
third discretization method, called Chwa-Points (CP), which
assembles the initial witness set for our algorithm from the
midpoints of all reflex-reflex edges and all convex vertices
from convex-reflex edges.

It follows from the results in [16] that, when the Chwa-
Points discretization is used for a witnessable input polygon,
our AGP algorithm will find an optimal solution in a single
iteration. However, as observed in our experiments, non-
witnessable polygons are the norm. In fact, among our random
benchmark instances, they constitute the vast majority.

Finally, an additional discretization was created based on
CP, in an attempt to improve the results previously obtained.
In this strategy, called Chwa-Extended (CE), besides all points
from CP, we also include all reflex vertices of P in the initial
discretization.

An example of each one of the four discretization strategies
implemented is presented in Fig. 12. Notice that, when char-
acterizing vertices of a hole, the terms convex and reflex have
their meaning inverted.

Let us now focus on the updating process of the witness
set throughout the algorithm. This procedure takes place in
two different occasions: while solving an AGPFC instance (in
line 5 of Algorithm 3) and when jumping to the next iteration
of the AGP algorithm (line 8 of Algorithm 1). In the first case,
as presented in Section III-B, new witnesses are positioned
considering the current solution of AGPWFC(Df ,C). Here, we
add to Df one point placed in the interior of each uncovered
region, which (as explained in Section III-B) is enough to
guarantee the convergence of the AGPFC resolution method.
See Fig. 13 for an example.

On the other hand, a deeper analysis is necessary when
dealing with the update procedure of the main algorithm,
because, as discussed at the beginning of this section, the



Fig. 12. Examples of the initial set D when using each one of the following
discretization strategies: (a) All-Vertices (AV); (b) Convex-Vertices (CV); (c)
Chwa-Points (CP); (d) Chwa-Extended (CE).

Fig. 13. Solution of an AGPWFC instance (left); New witnesses chosen
(violet) for the next iteration of the AGPFC algorithm (right).

selection of D affects all significant parts of the technique.
In a summarized form, the better the choice of a new set of
points for inclusion into the witness set, the better the lower
and the upper bounds obtained would be and, consequently,
the faster the convergence.

In essence, the process consists of adding points from the
uncovered regions arising from the solution of the previous
AGPW instance. Our first attempt was to imitate the strategy
adopted by the AGPFC algorithm and to position one new
witness inside each uncovered region. However, our exper-
iments later showed that the inclusion of only these points
were not sufficient to lead the algorithm to good performance
and convergence. The shortfall was traced to the absence of
new points on the boundary of the polygon, which proved to
be useful to the evolution of the bounds obtained. Therefore,
whenever an edge of an uncovered region is found to be
contained on the boundary of the polygon, its vertices and
its midpoint are also selected to increment the witness set
throughout the iterations. These points along with an interior
point of each uncovered region form the whole set M of
new witnesses. Note that the selection of midpoints in this
procedure is arbitrary and, in general, can have a better or
worse effect than choosing any other non-extreme point of
the segment. Fig. 14 displays an example of how this updated

procedure works.

Fig. 14. Solution of an AGPW instance (left); New witnesses chosen (violet)
for the next iteration of the AGP algorithm (right).

E. Guard Candidate Management

After constructing the arrangement induced by the set of
witnesses D and identifying the corresponding light AVPs, our
algorithm is able to build the guard candidate set C. This set
must be built in such a way that guarantees that an optimal
solution G for AGPW(D) is contained in C. After solving
AGPW(D), C is maintained and also used in AGPFC(C),
contributing to the discovery of a new upper bound. In this
section, we present, in details, how these candidates are
selected.

Since our first published work [6], two different discretiza-
tion strategies for C have been experimented. Both of them
follow the idea presented in Theorem 1 and construct C
using at least one point from each existing light AVP, thereby
ensuring that AGPW(D) is optimally solved. In addition,
as using only points from Light AVPs may not guarantee
the existence of a solution that covers the entire polygon
(a necessary requirement for the AGPFC solvability), both
strategies also include all vertices of P (V ⊂ C).

Our first strategy, named Boundary-Guards (BG), contains,
besides the vertices of P , all points from VL(D) (C =
V ∪VL(D)). This discretization was originally the only method
used for choosing C in the two papers that describe our
algorithm [6], [7].

However, recall that the arrangement does not grow lin-
early with the number of witnesses in D. This way, in our
experiments with large polygons, the tasks which depend on
C, such as the computation of visibility between pairs of
points, become increasingly time consuming. For example, in
a simple polygon with 5000 vertices, we may have to compute
more than 100 million visibility tests between candidates and
witnesses in a single iteration.

In this context, a new discretization with a lower number
of guard candidates was experimented in [17]. This time, the
points from VL(D) were not included in C. The idea, named
Center-Guards (CG), was to replace the vertices of a given
light AVP by an internal point of it, reducing the number of
these candidates by a factor of at least 3. For an example of
BG and CG strategies, see Fig. 15.

F. Resulting Algorithm

Once each of the main steps of the algorithm is understood,
we are able to describe how these parts fit together to comprise



Algorithm 4 AGP(P )
1: D ← initial witness set {see Section III-D}
2: Set LB← 0, UB← n and G∗ ← V
3: loop
4: Solve AGPW(D): set Gw ← optimal solution and zw ← |Gw| {see Section III-A}
5: if Gw is a coverage of P then
6: return Gw

7: end if
8: LB← max{LB, zw}
9: if LB = UB then

10: return G∗

11: end if
12: C ← VL(D) ∪ V (or CL(D) ∪ V ) {see Section III-E}
13: U ← CU (Gw) {one additional point per uncovered region}
14: Df ← D ∪ U
15: Solve AGPFC(C), using Df : set Gf ← optimal solution and

zf ← |Gf | {see Section III-B}
16: UB← min{UB, zf} and, if UB = zf then set G∗ ← Gf

17: if LB = UB then
18: return Gf

19: end if
20: D ← D ∪ U ∪M {see Section III-D}
21: end loop

Fig. 15. Examples of the guard candidate set C when using each of the
following discretizations: Boundary-Guards (BG) (left); Center-Guards (CG)
(right);

the complete algorithm. Algorithm 4 sums up how the process
as a whole works.

It is important to notice that the set of guard candidates
used in the AGPW resolution is actually the set C from the
AGPFC(C) instance solved on Line 15. This means that the
AGPW resolution is actually the first iteration of the AGPFC
algorithm (Algorithm 3). Thus, all information obtained during
the solution of AGPW(D) can be reused for AGPFC(C),
which improves the performance of the implementation.

Another relevant aspect of this algorithm is that information
on bounds may be used throughout the iterations in order to
skip unnecessary steps. For instance, if an upper bound UB
was found in a previous iteration and a new AGPFC instance
is being solved, whose current solution is not lower than UB,
then we may stop the AGPFC resolution before obtaining an
optimal solution since the upper bound can not be improved.

IV. IMPLEMENTATION AND COMPUTATIONAL RESULTS

To verify the quality of the new algorithm described, we
coded it in the C++ programming language and used the Com-
putational Geometry Algorithms Library (CGAL) [18] to ben-
efit from visibility operations, arrangement constructions and
other geometric tasks. In addition, to exactly solve the AGP
discretizations, we employed ILP solvers like XPRESS [13],
CPLEX [14] and the free package GLPK [15].

A. Instances

We experimented with AGP instances from 4 sources: [5],
[19], [20] and [7]. The instances, whose sizes vary from 20 to
5000 vertices, can be divided into 6 classes of polygons: sim-
ple, orthogonal, von Kock, simple-simple (simple with holes),
ortho-ortho (orthogonal with holes) and spike. Testing with
different polygon classes was crucial to verify the robustness
of the technique. In total, we tested our algorithm on 2880
instances and obtained an overall optimality rate of more than
90%. Fig. 16 presents examples of each class of polygons used
in our experiments.

B. Evolution of the Implementation

Our implementation went through several versions since its
first release. Such changes, which included the employment
of new routines, data structures and decisions, substantially
improved the performance of the software. Our first version
(I1) was completed in late 2012 and was reported in a
conference paper [6]. Shortly after that, in the first half of
2013, a second version (I2) was produced and described
in a full paper [7]. The latest version (I3) was developed
during a two-month internship at the Technische Universität



Fig. 16. Examples of instances from different classes. (a) Simple; (b) Orthogonal; (c) Simple-simple; (d) Ortho-ortho; (e) von Koch; (f) Spike.



Braunschweig (TUBS), in Germany, under the supervision of
Prof. Dr. A. Kröller. During this visit, the student worked in
straight collaboration with researchers from the Algorithms
Group headed by Prof. Dr. S. Fekete. Their group has also
developed methods for the AGP, including a solution for the
original problem [20]. Our new implementation is described
in a survey on algorithms for Art Gallery Problems [17], in a
joint work by researchers from UNICAMP and TUBS.

During the writing of the AGP Survey [17], we had the
chance of experimenting I1, I2 and the new version I3 on
900 instances in a single environment in the laboratory of
the Algorithms Group at TUBS. The joint experimentation
provided a direct comparison and verification of the improve-
ment occurred during the Master’s project. In this occasion,
I3 showed to be very successful, being able to optimally solve
768 polygons, including instances with 5000 vertices, in runs
of less than 20 minutes. Table I displays the optimality rates
achieved by I1, I2 and I3.

TABLE I
OPTIMALITY RATES OF I1, I2 AND I3.

Class Source n
Optimality Rate (%)
I1 I2 I3

Simple From [5]

200 100.00 100.00 100.00
500 100.00 100.00 100.00

1000 96.67 100.00 100.00
2000 6.67 50.00 100.00
5000 0.00 0.00 100.00

Orthogonal From [5]

200 100.00 100.00 96.67
500 100.00 96.67 93.33

1000 100.00 100.00 100.00
2000 70.00 90.00 100.00
5000 0.00 0.00 93.33

Simple-
simple From [17]

200 - 100.00 100.00
500 - 83.33 100.00

1000 - 0.00 100.00
2000 - 0.00 46.67
5000 - 0.00 0.00

Ortho-ortho From [7]

200 - 96.67 100.00
500 - 83.33 100.00

1000 - 3.33 96.67
2000 - 0.00 33.33
5000 - 0.00 0.00

von Koch From [5]

200 100.00 100.00 100.00
500 96.67 100.00 100.00

1000 46.67 100.00 100.00
2000 0.00 0.00 100.00
5000 0.00 0.00 0.00

Spike From [20]

200 - 100.00 100.00
500 - 100.00 100.00

1000 - 96.67 100.00
2000 - 96.67 100.00
5000 - 0.00 100.00

The results in Table I evince two big steps in our headway.
From I1 to I2, besides a considerable improvement in the

optimality rate, we became able to solve polygons with holes,
greatly increasing the range of treatable classes. Subsequently,
from I2 to I3, a remarkable performance improvement was
conquered, as evidenced by the resolution of polygons of 5000
vertices. These polygons have twice the size of the previous
largest instances already treated by AGP solvers, fact achieved
by I2 in [7].

TABLE II
AVERAGE TIME OF I1, I2 AND I3.

Class Source n
Average Time (sec)

I1 I2 I3

Simple From [5]
200 7.31 3.63 0.75
500 67.81 32.82 2.96
1000 358.97 158.73 9.18

Orthogonal From [5]
200 4.10 2.72 0.37
500 30.06 19.61 1.49
1000 189.41 111.40 5.22

von Koch From [5]
200 11.12 3.54 1.20
500 158.53 31.88 7.80
1000 767.01 186.49 52.81

In order to confirm this analysis, we collected information
about the time necessary to find optimal solutions. Table II
shows the average time needed to solve simple, orthogonal and
von Koch polygons, considering only instances where optimal
solutions were found by all three implementations. From this
table, one can see that the average time of I2 can be about
5 times smaller than I1, as verified in results of von Koch
polygons with 500 vertices. The difference is even greater
when analyzing I2 against I3, which is capable of solving,
on average, orthogonal polygons of size 1000 almost 22 times
faster than I2.

C. Comparison With Other Techniques

In recent years, other algorithms were proposed for the AGP.
In this Master’s thesis, we compared our achievements with
the two of them that excelled the most. First, we analyzed
the differences between our method and the work by Bottino
and Laurentini in 2011 [19]. In [19], Bottino and Laurentini
proposed a heuristic for the original AGP, aiming to produce
good viable solutions with an efficient method. The technique
was experimented and obtained promising results, including
some optimal solutions. In the paper, the authors compared
their technique with the one by Amit et al. [21] and claimed
that their method was able to achieve better results.

Upon learning about this work, we decided to try our I2
version with exactly the same instances used by Bottino and
Laurentini and compare our findings. The experiments were
done using all simple and orthogonal instances from Bottino
et al., which vary between 30 and 60 vertices. Table III
summarizes the results, showing two types of information:
average number of guards and average run time.

In our tests, I2 was able to find proven optimal solutions for
all instances, meaning that the column with average number of
guards found by our method actually contains optimal values.
Knowing this, we can conclude that the heuristic by Bottino
and Laurentini was able to find good solutions, but not always



TABLE III
COMPARISON BETWEEN THE METHOD OF BOTTINO ET AL. [19] AND I2.

Class n
Number of Guards Time (sec)
Method [19] I2 Method [19] I2

Simple

30 4.20 4.20 1.57 0.14
40 5.60 5.55 2.97 0.10
50 6.70 6.60 221.92 0.24
60 8.60 8.35 271.50 0.27

Orthogonal

30 4.60 4.52 1.08 0.04
40 6.10 6.00 9.30 0.07
50 7.80 7.70 6.41 0.12
60 9.30 9.10 81.95 0.16

optimal. Except for simple polygons with 30 vertices, the
heuristic did not manage to find the best possible solutions for
all polygons of a subgroup. Looking more carefully, we can
notice a growing gap between the average number of guards
from both techniques as the size of the instances increases.

Besides comparing the quality of the solutions, it is also
important to evaluate the time needed to find them. To this end,
Table III exhibits the computing times for the two methods. It
is important to notice though that the experiments were done in
different environments, which invalidates a direct comparison
of performance between the techniques. While our tests were
conducted in machines featuring an Intel R© CoreTM i7-2600
at 3.40 GHz and 8 GB of RAM, the researchers of [19]
performed their experiments on an Intel R© Core2

TM
processor

at 2.66 GHz and with 2 GB of RAM. Despite this, Table III
shows that the average run time of our technique to compute
proven optimal solutions for the AGP is orders of magnitude
smaller than the time used by the heuristic. At least it seems
safe to say that this large disparity in computing times can not
be entirely attributed to hardware and software differences.

Finally, we also performed a complete comparison with
the most recent implementation of the algorithm presented in
2012 by Kröller et al. [20], based on results obtained from
the survey on algorithms for the AGP [17]. All experiments
were performed during the internship at TUBS on the same
computing environment, enabling a fair comparison between
the two techniques. Considering all experiments, where only
polygons of size 200, 500, 1000, 2000 and 5000 were consid-
ered, our current implementation (I3) was very successful. I3
was able to optimally solve 768 of 900 polygons, including
instances with 5000 vertices, in runs of less than 20 minutes.
Meanwhile, Kröller et al. technique (here called BS3) could
solve 583 instances. In addition, while our version was able to
obtain 100% optimality in 21 out of 30 subgroups of instances
considered, the version from TUBS only achieved this for 4
subgroups. Table IV shows the optimality results.

To get a deeper insight into the differences in behavior of
the techniques, we also developed a running time comparison
between them, using results of all polygon classes. This
comparison is shown in Fig. 17. For a fairer analysis, the
average times in the charts only considered values of instances
resolved by both I3 and TUBS implementation.

TABLE IV
OPTIMALITY RATE OF OUR IMPLEMENTATIONS AND BS3.

Class Source n
Optimality Rate (%)

BS3 I3

Simple From [5]

200 96.67 100.00
500 96.67 100.00

1000 90.00 100.00
2000 60.00 100.00
5000 26.67 100.00

Orthogonal From [5]

200 96.67 96.67
500 93.33 93.33

1000 86.67 100.00
2000 70.00 100.00
5000 40.00 93.33

Simple-
simple From [7]

200 86.67 100.00
500 60.00 100.00

1000 13.33 100.00
2000 0.00 46.67
5000 0.00 0.00

Ortho-ortho From [7]

200 86.67 100.00
500 53.33 100.00

1000 16.67 96.67
2000 0.00 33.33
5000 0.00 0.00

von Koch From [5]

200 100.00 100.00
500 93.33 100.00

1000 96.67 100.00
2000 86.67 100.00
5000 0.00 0.00

Spike From [20]

200 96.67 100.00
500 100.00 100.00

1000 100.00 100.00
2000 100.00 100.00
5000 96.67 100.00

In Fig. 17, it is easy to see that BS3 was faster in solving
simple-simple, ortho-ortho and von Koch polygons. On the
other hand, I3 was more efficient with simple polygons and
meaningly better when dealing with orthogonal and spike
instances. In the specific case of the spike class, I3 was about
20 times faster than Kröller et al. implementation to solve the
instances with 5000 vertices.

Through all results presented, one can conclude that the
method from TUBS have a natural difficulty in converging to
a proven optimal solution. While some positive results where
observed in run time, the optimality rate of BS3 was not able
to follow it. For illustration, BS3 needed an average time of
164.65 seconds to solve simple-simple polygons with 1000
vertices (26% percent less than I3), but the optimality rate for
this subgroup was only 13.33%, far below the results using I3,
when all 30 instances were solved within the imposed time
limit. In the case of our method, it seems that our technique,
since its first release, tends to find the optimal solution in
almost all cases and the low optimality observed in larger
instances is directly related to the maximum run time imposed
in the testing environment.

D. More Results

In the thesis [12], a complete analysis is presented as well
as results of the entire set of experiments, which include
other interesting data, as, for example, the effect of employing
different techniques for choosing the witness and the guard



Fig. 17. Performance comparison between I3 and TUBS’ technique (BS3) when solving the following classes: (a) Simple; (b) Orthogonal; (c) Simple-simple;
(d) Ortho-ortho; (e) von Koch; (f) Spike. Here, only fully solved instances are considered.

candidate sets. In addition, we also reported the results of
using different ILP solvers in our implementation.

V. CONCLUSION

In this work, we designed an algorithm to optimally solve
the AGP. The method iteratively discretizes the original prob-
lem to find lower and upper bounds while seeking an optimal
solution for this NP-hard problem. To allow its correct evalu-
ation, our algorithm was coded and had its implementation
modified and optimized over time. In total, we tested our
technique on more than 2800 instances from different sources
and classes of polygons. Our methodology proved capable of

optimally solving polygons with up to 5000 vertices in less
than 20 minutes each, something not possible a few years ago.

Moreover, we also compared our results with those pro-
duced by other state-of-the-art techniques. These comparisons
revealed a significant advantage when using our technique,
which proved to be far more effective, faster and more robust
than all the others. These results encouraged us to release a
free source implementation of our algorithm on the web page
of the project [8]. By doing so, we expect to contribute to
future research on the topic, since it is now possible for new
techniques to be directly tested and compared to our software
package.



Lastly, this research generated four papers on the subject,
two of which have already been published [22], [6] and two
recently submitted [7], [17]. These studies provided a strong
interaction with other researchers on the topic, as was the case
of the survey for the AGP [17], produced in partnership with
a group from TUBS.
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